A note on some characterizations of Sidon sets
HTML articles powered by AMS MathViewer
- by Ron C. Blei
- Proc. Amer. Math. Soc. 35 (1972), 303-304
- DOI: https://doi.org/10.1090/S0002-9939-1972-0303219-6
- PDF | Request permission
Abstract:
A simple proof of the following theorem is presented: $E \subset Z$ is a Sidon set if and only if ${A_E}(T)$ equals any one of the following three spaces: ${U_E}(T), \cap p > 1A_E^p(T)$, and ${C_E}(T,\omega )$.References
- Robert E. Edwards, Edwin Hewitt, and Kenneth A. Ross, Lacunarity for compact groups. II, Pacific J. Math. 41 (1972), 99–109. MR 315362, DOI 10.2140/pjm.1972.41.99
- Jean-Pierre Kahane, Séries de Fourier absolument convergentes, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 50, Springer-Verlag, Berlin-New York, 1970 (French). MR 0275043, DOI 10.1007/978-3-662-59158-1
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 35 (1972), 303-304
- MSC: Primary 43A45
- DOI: https://doi.org/10.1090/S0002-9939-1972-0303219-6
- MathSciNet review: 0303219