Metrization of symmetric spaces and regular maps
HTML articles powered by AMS MathViewer
- by Harold W. Martin
- Proc. Amer. Math. Soc. 35 (1972), 269-274
- DOI: https://doi.org/10.1090/S0002-9939-1972-0303511-5
- PDF | Request permission
Abstract:
A symmetric d for a topological space R is said to be coherent if whenever $\{ x(n)\}$ and $\{ y(n)\}$ are sequences in R with $d(x(n),y(n)) \to 0$ and $d(x(n),x) \to 0$, then $d(y(n),x) \to 0$. V. Niemytzki and W. A. Wilson have essentially shown that a topological space R is metrizable if and only if R is symmetrizable via a coherent symmetric. Conditions on a symmetric d which are equivalent to d being coherent are established. As a consequence, a theorem of A. Arhangel’skiĭ may be refined by showing that if $f:R \to Y$ is a quotient map from a metrizable space R onto a ${T_0}$-space y, then Y is metrizable if and only if f is a regular map.References
- A. Arhangel′skiĭ, On factor maps of metric spaces, Dokl. Akad. Nauk SSSR 155 (1964), 247–250 (Russian). MR 0163284
- A. V. Arhangel′skiĭ, Bicompact sets and the topology of spaces., Trudy Moskov. Mat. Obšč. 13 (1965), 3–55 (Russian). MR 0195046
- A. V. Arhangel′skiĭ, Mappings and spaces, Russian Math. Surveys 21 (1966), no. 4, 115–162. MR 0227950, DOI 10.1070/RM1966v021n04ABEH004169
- E. W. Chittenden, On the metrization problem and related problems in the theory of abstract sets, Bull. Amer. Math. Soc. 33 (1927), no. 1, 13–34. MR 1561315, DOI 10.1090/S0002-9904-1927-04295-1
- A. H. Frink, Distance functions and the metrization problem, Bull. Amer. Math. Soc. 43 (1937), no. 2, 133–142. MR 1563501, DOI 10.1090/S0002-9904-1937-06509-8
- Kiiti Morita and Sitiro Hanai, Closed mappings and metric spaces, Proc. Japan Acad. 32 (1956), 10–14. MR 87077
- V. W. Niemytzki, On the “third axiom of metric space”, Trans. Amer. Math. Soc. 29 (1927), no. 3, 507–513. MR 1501402, DOI 10.1090/S0002-9947-1927-1501402-2
- A. H. Stone, Metrizability of decomposition spaces, Proc. Amer. Math. Soc. 7 (1956), 690–700. MR 87078, DOI 10.1090/S0002-9939-1956-0087078-6
- Wallace Alvin Wilson, On Semi-Metric Spaces, Amer. J. Math. 53 (1931), no. 2, 361–373. MR 1506824, DOI 10.2307/2370790
- G. T. Whyburn, Directed families of sets and closedness of functions, Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 688–692. MR 182953, DOI 10.1073/pnas.54.3.688
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 35 (1972), 269-274
- MSC: Primary 54E25
- DOI: https://doi.org/10.1090/S0002-9939-1972-0303511-5
- MathSciNet review: 0303511