NONCOINCIDENCE OF THE STRICT AND STRONG OPERATOR TOPOLOGIES

JOEL H. SHAPIRO

Abstract. Let E be an infinite-dimensional linear subspace of $C(S)$, the space of bounded continuous functions on a locally compact Hausdorff space S. If μ is a regular Borel measure on S, then each element of E may be regarded as a multiplication operator on $L^p(\mu)$ $(1 \leq p < \infty)$. Our main result is that the strong operator topology this identification induces on E is properly weaker than the strict topology. For E the space of bounded analytic functions on a plane region G, and μ Lebesgue measure on G, this answers negatively a question raised by Rubel and Shields in [9]. In addition, our methods provide information about the absolutely p-summing properties of the strict topology on subspaces of $C(S)$, and the bounded weak star topology on conjugate Banach spaces.

1. Introduction. Let $C(S)$ denote the space of bounded, continuous, complex valued functions on a locally compact Hausdorff space S, and let $C_0(S)$ denote those functions in $C(S)$ which vanish at infinity. The strict topology β on $C(S)$ is the locally convex topology induced by the seminorms

$$f \mapsto \|fk\|_\infty \quad (f \in C(S)),$$

where k runs through $C_0(S)$ and $\|\cdot\|_\infty$ denotes the supremum norm. This topology was introduced in [1] by Buck who derived many of its fundamental properties. In particular [1, Theorems 1 and 2]: β is complete-Hausdorff, and weaker than the norm topology; the norm and strictly bounded subsets of $C(S)$ coincide, and the β-dual of $C(S)$ can be identified with $M(S)$, the space of finite, regular Borel measures on S, where the pairing between the spaces is

$$\langle f, \mu \rangle = \int f \, d\mu \quad (f \in C(S), \mu \in M(S)).$$

Let μ be a (possibly infinite) regular Borel measure on S, as defined in [4, Section 52]. Note that built into this definition is the fact that $\mu(K) < \infty$
for every compact subset \(K \) of \(S \) \([4, \text{p. 223}].\) For each \(f \) in \(C(S) \) the equation
\[
M_g f = fg \quad (g \in L^p(\mu))
\]
defines a bounded linear operator \(M_f \) on \(L^p(\mu). \) It is not difficult to see from the fact that \(\mu \) gives finite measure to compact sets that the linear map \(f \to M_f \) is actually an isometry taking \(C(S) \) into the space of all bounded linear operators on \(L^p(\mu). \) Thus \(C(S) \) inherits the strong operator topology \(\sigma_p(\mu), \) defined by the seminorms

\[
(1.2) \quad f \to \left(\int |fg|^p \, d\mu \right)^{1/p} \quad (f \in C(S)),
\]
where \(g \) runs through \(L^p(\mu) \) \([3, \text{VI. 1.2, p. 475}].\) Note that \(\sigma_p \) is locally convex and Hausdorff.

Now \(C(S) \) also acts on \(C_0(S) \) by multiplication, and in this case the corresponding strong operator topology is the strict topology. In \([9, 5.18(c), \text{p. 274}].\) Rubel and Shields asked if \(\beta = \sigma_p(\mu) \) on the space \(H^o(G), \) where \(\mu \) is two-dimensional Lebesgue measure on \(G, \) and \(G \) supports nonconstant bounded analytic functions. In this case \(H^o(G) \) is infinite dimensional \([9, \text{Section 2.3}].\) so the question is answered in the negative by the following theorem, which is our main result.

Theorem 1. Let \(E \) be an infinite-dimensional linear subspace of \(C(S), \) and suppose \(\mu \) is a regular Borel measure on \(S. \) Then the strong operator topology \(\sigma_p(\mu) \) induced on \(E \) by its action on \(L^p(\mu) \) is properly weaker than the strict topology.

The proof of this result occupies §3, and uses the notion of absolutely \(p \)-summing locally convex topologies, introduced in the next section. In §4 we comment briefly on the bounded strong operator topology and the bounded weak star topology.

2. Absolutely \(p \)-summing topologies. Let \(\tau \) be a locally convex topology on a real or complex linear space \(E, \) and let \(E' = E' \) denote the \(\tau \)-dual of \(E \) (all \(\tau \)-continuous linear functionals on \(E \)). For \(e' \) in \(E' \) and \(e \) in \(E \) we will write \(\langle e, e' \rangle \) instead of \(e'(e) \). A sequence \((e_n) \) in \(E \) is called \(\tau \)-weakly \(p \)-summable if \(\sum |\langle e_n, e' \rangle|^p < \infty \) for all \(e' \) in \(E' \), and \(\tau \)-absolutely \(p \)-summable if \(\sum S(e_n)^p < \infty \) for every \(\tau \)-continuous seminorm \(S \) on \(E \) \((1 \leq p < \infty). \) If every \(\tau \)-weakly \(p \)-summable sequence is \(\tau \)-absolutely \(p \)-summable, we say \(\tau \) is absolutely \(p \)-summing. For example, the weak topology on a Banach space is absolutely \(p \)-summing for all \(p; \) but if the space is infinite-dimensional, then the Dvoretzky-Rogers theorem \([8, \text{Theorem 8, p. 350}].\) asserts that the norm topology is absolutely \(p \)-summing for no \(p \) \((1 \leq p < \infty). \) Note that if \(\tau \) is not absolutely \(p \)-summing, then neither is any stronger locally convex topology on \(E \) with the same continuous linear functionals.
The following lemma, which is an easy consequence of the Dvoretzky-Rogers theorem, is the key to our proof of Theorem 1. We note that the same idea has been used in [6, Example 2, p. 417].

Lemma 1. Let E be an infinite-dimensional normed space, and let F be a linear subspace of E' which norms E; that is,

$$
\|e\| = \sup\{|\langle e, f \rangle| : f \in F, \|f\| \leq 1\}
$$

for each e in E. Let τ denote the topology on E of uniform convergence on (norm) null sequences of F. Then τ is not absolutely p-summing ($1 \leq p < \infty$).

Proof. Since E is infinite-dimensional it follows from the Dvoretzky-Rogers theorem stated above that there is a sequence (e_n) in E which is weakly, but not absolutely, ℓ_p-summable for the norm topology; that is, $\sum |\langle e_n, e' \rangle|^p < \infty$ for all e' in E', but $\sum \|e_n\|^p = \infty$. Since τ is weaker then the norm topology, every τ-continuous linear functional on E is norm continuous; hence (e_n) is τ-weakly ℓ_p-summable. We claim that (e_n) is not τ-absolutely ℓ_p-summable. For by (2.1) there exists f_n in F with $\|f_n\| \leq 1$, and

$$
|\langle e_n, f_n \rangle| > \|e_n\|^{2/p} \quad (n = 1, 2, \cdots).
$$

Let (a_n) be a sequence of nonnegative numbers such that $\lim a_n = 0$, and $\sum a_n^p \|e_n\|^p = \infty$, and let $g_n = a_nf_n$ $(n=1, 2, \cdots)$. Then $\lim \|g_n\| = 0$, so the equation $Se = \sup_n |\langle e, g_n \rangle|$ (e in E) defines a τ-continuous seminorm on E. But

$$
\sum (Se_n)^p \geq \sum |\langle e_n, g_n \rangle|^p = \sum a_n^p |\langle e_n, f_n \rangle|^p \geq \sum a_n^p \|e_n\|^p/2 = \infty,
$$

so τ is not absolutely p-summing.

We will also need a result of J. B. Conway concerning factorization of subsets of $M(S)$. Recall that a subset H of $M(S)$ is called tight if for each $\varepsilon > 0$ there exists a compact subset K of S such that $|\mu|(S - K) < \varepsilon$ for each μ in H.

Lemma 2 [2, Theorem 2.2, p. 476]. A bounded subset H of $M(S)$ is tight if and only if there is a bounded subset B of $M(S)$ and a function k in $C_0(S)$ such that $H = kB$.

Here, of course, $kB = \{kb : b \in B\}$. We can now prove the main result of this section.

Proposition 1. Let E be an infinite-dimensional linear subspace of $C(S)$. Then the strict topology on E is not absolutely p-summing ($1 \leq p < \infty$).
PROOF. Since the strict dual of $C(S)$ is $M(S)$, where the spaces are paired by (1.1) [1, Theorem 2], it follows easily that the strict dual E'_β of E may be identified with the quotient space $M(S)/E^\circ$, via the pairing

$$\langle f, \alpha + E^\circ \rangle = \int f \, d\alpha \quad (f \in E, \alpha \in M(S)),$$

where E° is the annihilator of E in $M(S)$ (see [5, Theorem 14.5, p. 120]). Moreover E'_β is a subspace of E', the norm dual of E, so it is a normed space.

We will need the fact that for each α in $M(S)$ the norm of the coset $\alpha + E^\circ$ viewed as a linear functional on E coincides with its norm as an element of $M(S)/E^\circ$. To see this, note that each e in E acts by integration as a linear functional on $M(S)$ of norm $\|e\|$, so the pairing (1.1) induces an isometric isomorphism of E into $M(S)'$. Standard Banach space theory now shows that the weak star closure \hat{E} of E in $M(S)'$ is isometrically isomorphic to the dual of $M(S)/E^\circ$, where E° is the annihilator of E in $M(S)$. But $E^\circ = E^\circ$, which proves our assertion.

Now the evaluation functionals $(\lambda_s : s \in S)$ defined by

$$\lambda_s(e) = e(s) \quad (e \in E)$$

are strictly continuous and have norm ≤ 1, so E'_β norms E in the sense of Lemma 1; hence Lemma 1 shows that the topology τ of uniform convergence on norm null sequences in E'_β is not absolutely p-summing. Clearly τ is stronger than the weak topology induced on E by E'_β, so we will be finished if we prove that $\tau \leq \beta$; for then $E'_\beta = E'_\beta$, hence β is not absolutely p-summing since τ is not.

To show that $\tau \leq \beta$, suppose (e'_n) is a norm null sequence in E'_β. By the isometric identification of E'_β with $M(S)/E^\circ$ there exists a sequence (α_n) in $M(S)$ such that $\lim \|\alpha_n\| = 0$, and for each n, $\langle e' \alpha_n, e' \alpha_n \rangle = \int e \, d\alpha_n \quad (e \in E)$. It is easy to see that (the range of) (α_n) is tight, hence by Lemma 2 there is a bounded sequence (λ_n) in $M(S)$ and a function k in $C_0(S)$ such that $\alpha_n = k \lambda_n$ for all n. Thus for e in E,

$$\sup_n |\langle e, e'_n \rangle| = \sup_n \left| \int e k \, d\lambda_n \right| \leq \|ek\|_\infty \sup_n \|\lambda_n\|.$$

Since the left side of this inequality is a typical τ-seminorm, and the right side is a β-continuous seminorm, we have $\tau \leq \beta$. □

Note that Proposition 1 shows in particular that on any infinite-dimensional linear subspace E of $C(S)$ the strict topology is not nuclear. This fact was first conjectured by Klaus D. Bierstedt for $E = H^\infty(D)$, D the open unit disc (private communication).
3. Proof of Theorem 1. For convenience we replace the function g in (1.2) by $|g|^p$. Thus the topology $\sigma_p = \sigma_p(\mu)$ is induced by the seminorms

$$S_p(f) = \left\{ \int |f|^p g \, d\mu \right\}^{1/p}$$

where g runs through L^+, the class of nonnegative μ-integrable functions on S. Since the maximum of two L^+ functions is again in L^+, we see easily that the sets

$$\{ f \in C(S) : S_p f \leq 1 \} \quad (g \in L^+)$$

form a base for the σ_p-neighborhoods of zero in E.

Now if $g \in L^+$, then it follows from the regularity of μ that $g\mu \in M(S)$. By the argument used in the proof of Lemma 2 [2, Theorem 2.2] with $H = \{ g\mu \}$, there exists $k \in C_0(S)$ and $h \in L^+$ such that $g = k^p h$. Thus

$$S_p f \leq \| f k \|_\infty \| h \|_1^{1/p} \quad (f \in C(S)),$$

so $\sigma_p \leq \beta$ on $C(S)$.

We complete the proof by showing that $\sigma_p \neq \beta$ on E whenever E is infinite-dimensional. If the strict dual E'_β of E is different from the σ_p-dual, then we are done; so suppose these duals coincide. We claim that in this case σ_p is absolutely p-summing; so again $\sigma_p \neq \beta$, this time by Proposition 1.

Recall that the norm on E'_β is the restriction of the E' norm. Suppose (e_n) is a weakly σ_p (hence β) p-summable sequence in E. Then, as in [7, §1.2.3, p. 22], the set

$$\left\{ \sum_{1}^{N} a_n e_n : N = 1, 2, \ldots ; \sum |a_n|^q \leq 1 \right\},$$

where $p^{-1} + q^{-1} = 1$, is bounded in the weak topology induced on E by E'_β, hence strictly bounded by Mackey’s theorem [5, §17.5, p. 155]. Since the strict and norm bounded subsets of E coincide [1, Theorem 1], we have

$$\sup \left\{ \sum_{1}^{N} a_n \langle e_n, e' \rangle \right\} < \infty,$$

where the supremum is taken over all positive integers N, all sequences (a_n) in the unit ball of l^q, and all e' in the unit ball of E'_β. From this it follows easily that

$$\sup \left\{ \sum_{1}^{N} |\langle e_n, e' \rangle|^p : e' \in E'_\beta, \| e' \| \leq 1 \right\} < \infty.$$

Now if S is a σ_p-continuous seminorm on E, then S is bounded on a set of
the form (3.2), hence $S \subseteq S_g$ for some g in L^+. Taking λ_s as in (2.2) we obtain:

$$\sum (Se_n)^p = \sum (S_\sigma e_n)^p = \sum |e_n|^p g \, d\mu$$

$$= \int (\sum |\langle e_n, \lambda_s \rangle|^p) g(s) \, d\mu(s) \leq \|g\|_1 \sup \sum |\langle e_n, e' \rangle|^p < \infty,$$

where the supremum in the last line is taken over all e' in E'_p with $\|e'\| \leq 1$; a condition satisfied by each λ_s. That the supremum is finite follows from (3.3); hence σ_p is an absolutely p-summing topology on E, and $\sigma_p \neq \beta$. □

4. The bounded weak star and bounded strong operator topologies. Let E be a subspace of $C(S)$, and let $b\sigma_p = b\sigma_p(\mu)$ denote the bounded strong operator topology induced on E by its action on $L^p(\mu)$ (see [3, VI. 9.9, p. 512]); that is, the strongest topology on E agreeing with σ_p on norm bounded sets.

If X is a Banach space, then the bounded weak star topology on its dual X' is the strongest topology on X' agreeing with the weak star topology on bounded sets [3, V.3.3, p. 427]. According to the Banach-Dieudonné theorem [3, V.5.4], the bounded weak star topology on X' is just the topology of uniform convergence on null sequences of X. From this and Lemma 1 we get the following result, already noted by Lazar and Retheford for $X = c_0$ [6, Example 2, p. 417].

Theorem 2. If X is an infinite-dimensional Banach space, then the bounded weak star topology on X' is not absolutely p-summing. In particular, it is not nuclear.

In [10, Theorem 2, p. 475] we showed that if E is a linear subspace of $C(S)$ whose unit ball is strictly compact, then E is the dual of the quotient Banach space $M(S)/E^0$, and the bounded weak star topology thus induced on E is just the strict topology. This quickly yields the following

Theorem 3. Suppose E is a linear subspace of $C(S)$ whose unit ball is strictly compact. Let μ be a regular Borel measure on S. Then $b\sigma_p(\mu) = \beta$.

Proof. By [10, Theorem 2] β is the strongest topology on E agreeing on bounded sets with the weak topology induced by $M(S)/E^0 = E'_p$. The proof of Theorem 1 shows that $\sigma_p \leq \beta$, so the unit ball of E is also σ_p-compact. But the topology σ_p is Hausdorff, so $\sigma_p = \beta$ on the unit ball of E, hence on every bounded set (since they are both vector topologies). Thus $b\sigma_p = \beta$. □

In particular note that if E is $H^\infty(G)$ and μ is Lebesgue measure on G,
then the hypotheses of Theorem 3 are satisfied. Thus if \(G \) supports non-constant bounded analytic functions, then \(H^e(G) \) is infinite-dimensional; and the strict topology on it is the bounded strong operator topology, but not the strong operator topology.

REFERENCES

Department of Mathematics, Michigan State University, East Lansing, Michigan 48823