Closed convex hypersurfaces with second fundamental form of constant curvature
HTML articles powered by AMS MathViewer
- by Rolf Schneider
- Proc. Amer. Math. Soc. 35 (1972), 230-233
- DOI: https://doi.org/10.1090/S0002-9939-1972-0307133-1
- PDF | Request permission
Abstract:
It is shown that the Euclidean spheres are the only closed hypersurfaces in Euclidean space on which the second fundamental form defines a (nondegenerate) Riemannian metric of constant curvature.References
- Élie Cartan, Les surfaces qui admettent une seconde forme fondamentale donnée, Bull. Sci. Math. (2) 67 (1943), 8–32 (French). MR 12495
- Luther Pfahler Eisenhart, Riemannian Geometry, Princeton University Press, Princeton, N. J., 1949. 2d printing. MR 0035081
- Pierre Jean Erard, Über die zweite Fundamentalform von Flächen im Raum, Abhandlung zur Erlangung der Würde eines Doktors der Mathematik der Eidgenössischen Technischen Hochschule Zürich, Eidgenössische Technische Hochschule Zürich, Zürich, 1968 (German). Dissertation No. 4234. MR 0288670 R. B. Gardner, Subscalar pairs of metrics with applications to rigidity and uniqueness of hypersurfaces with a non-degenerate second fundamental form (to appear).
- Rolf Schneider, Zur affinen Differentialgeometrie im Grossen. I, Math. Z. 101 (1967), 375–406 (German). MR 220189, DOI 10.1007/BF01109803
- Udo Simon and Alan Weinstein, Anwendungen der de Rhamschen Zerlegung auf Probleme der lokalen Flächentheorie, Manuscripta Math. 1 (1969), 139–146 (German, with English summary). MR 246234, DOI 10.1007/BF01173099
- Udo Simon, $\textrm {II}$-Verbiegungen von Eiflächen, Arch. Math. (Basel) 22 (1971), 319–324 (German). MR 293552, DOI 10.1007/BF01222582 K. Voss, Isometrie von Flächen bezüglich der zweiten Fundamentalform, Nachr. Österr. Math. Ges. 91 (1970), 73.
- Rainer Walden, Eindeutigkeitssätze für II-isometrische Eiflächen, Math. Z. 120 (1971), 143–147 (German). MR 284958, DOI 10.1007/BF01110152
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 35 (1972), 230-233
- MSC: Primary 53C45
- DOI: https://doi.org/10.1090/S0002-9939-1972-0307133-1
- MathSciNet review: 0307133