A FACTORABLE WEIGHT WITH ZERO SZEGÖ INFIMUM

BERRIEN MOORE III

Abstract. The associated Szegö infimum of a factorable operator valued weight function need not be nonzero. An example is constructed using algebraic properties of vectorial Toeplitz operators.

Let $N(\cdot)$ be an essentially bounded operator-valued function whose domain is the unit circle and whose range is in the space of bounded non-negative operators on a separable Hilbert space \mathcal{H}. As is well known, if $N(\cdot)$ admits a factorization $\theta(\cdot)\theta(\cdot)$ where $\theta(\cdot)$ is an outer function, then the Szegö infimum for a vector c in \mathcal{H} equals $\|\theta(0)c\|$ [3, p. 224]. We give an extremely simple example showing that it is possible for $N(\cdot)$ to be factorable but with associated Szegö infimum nontrivially equal to zero for some vector c in \mathcal{H}. To state this example, it is more natural to use an algebraic Toeplitz model [2].

Let \mathcal{H} be a separable Hilbert space with S denoting a unilateral shift on \mathcal{H} of infinite multiplicity. Set $\mathcal{C}=\ker S^*$ and define on \mathcal{C} a unilateral shift V_0 of multiplicity one. By a diagonal matrix extend V_0 to an operator V on \mathcal{H}. Let $A=V^*+S$ and note that A is S-analytic and has trivial kernel. In addition, A^* has trivial kernel so that A is S-outer. Define the nonnegative S-Toeplitz operator $T=A^*A$ and consider the Szegö infimum relative to T for the vector c of norm one in the kernel of V_0^*. Computing, we have that

$$\inf_{f\in\mathcal{C}} \|T(c - Sf)\|^{1/2} = \inf_{f\in\mathcal{C}} \|A(c - Sf)\| = \inf_{f\in\mathcal{C}} \|Sc - SAf\| = 0,$$

since $\text{cl}(A\mathcal{C})=\mathcal{C}$. As was stated, the Szegö infimum for a vector c in \mathcal{C} computes $\|A_0(c)\|$ where $A_0=P_\mathcal{C}A|\mathcal{C}$. Thus the example constructed is one in which the kernel of A_0 is nontrivial but $\text{cl}(A^*\mathcal{C})=\mathcal{C}$. A necessary and sufficient condition for a positive Szegö infimum is the containment of any dense subset of the kernel of S^* in the range of the nonnegative square root of the S-Toeplitz operator T [1].

Received by the editors July 20, 1970.

AMS 1969 subject classifications. Primary 4615; Secondary 3067, 4710.

Key words and phrases. Hilbert space, Szegö infimum, Toeplitz operator, prediction theory, unilateral shift, outer factorization.

1 Supported in part by NSF Grant GP-14784.

American Mathematical Society 1972
I am grateful to Professors E. Nordgren and J. Rovnyak for their helpful remarks regarding this example.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NEW HAMPSHIRE, DURHAM, NEW HAMPSHIRE 03824