Asymptotic behavior of solutions of perturbed linear systems
HTML articles powered by AMS MathViewer
- by L. E. Bobisud
- Proc. Amer. Math. Soc. 35 (1972), 457-463
- DOI: https://doi.org/10.1090/S0002-9939-1972-0301313-7
- PDF | Request permission
Abstract:
The existence of solutions of the system $y’ + Ay = f(t,y)$ having the form $y(t) = Z(t)a(t)$ is proved, where $Z(t)$ satisfies $Z’ + AZ = 0$ and the vector $a(t)$ has limit $\alpha$ as t increases. Estimates for the rate of convergence to zero of $a(t) - \alpha$ and of $y(t) - Z(t)\alpha$ are obtained.References
- J. W. Bebernes and N. X. Vinh, On the asymptotic behavior of linear differential equations, Amer. Math. Monthly 72 (1965), 285–287. MR 181784, DOI 10.2307/2313699
- Fred Brauer and James S. W. Wong, On asymptotic behavior of perturbed linear systems, J. Differential Equations 6 (1969), 142–153. MR 239213, DOI 10.1016/0022-0396(69)90122-3
- W. A. Coppel, Stability and asymptotic behavior of differential equations, D. C. Heath and Company, Boston, Mass., 1965. MR 0190463
- Jack K. Hale and Nelson Onuchic, On the asymptotic behavior of solutions of a class of differential equations, Contributions to Differential Equations 2 (1963), 61–75. MR 159063
- Thomas G. Hallam, Asymptotic behavior of the solutions of an $n\textrm {th}$ order nonhomogeneous ordinary differential equation, Trans. Amer. Math. Soc. 122 (1966), 177–194. MR 188562, DOI 10.1090/S0002-9947-1966-0188562-8
- I. Norman Katz, Asymptotic behavior of solutions to some $n$th order linear differential equations, Proc. Amer. Math. Soc. 21 (1969), 657–662. MR 239199, DOI 10.1090/S0002-9939-1969-0239199-1
- Phil Locke, On the asymptotic behavior of solutions of an $n\textrm {th}$-order nonlinear equation, Proc. Amer. Math. Soc. 18 (1967), 383–390. MR 212293, DOI 10.1090/S0002-9939-1967-0212293-5
- Phil Locke, Correction to a paper by Brauer and Wong, J. Differential Equations 9 (1971), 380. MR 273106, DOI 10.1016/0022-0396(71)90089-1
- M. Ráb, Les formules asymptotiques pour les solutions d’un système des équations différentielles, Arch. Math. (Brno) 1 (1965), 199–212 (French). MR 197866
- William F. Trench, On the asymptotic behavior of solutions of second order linear differential equations, Proc. Amer. Math. Soc. 14 (1963), 12–14. MR 142844, DOI 10.1090/S0002-9939-1963-0142844-7
- Paul Waltman, On the asymptotic behavior of solutions of a nonlinear equation, Proc. Amer. Math. Soc. 15 (1964), 918–923. MR 176170, DOI 10.1090/S0002-9939-1964-0176170-8
- Paul Waltman, On the asymptotic bahavior of solutions of an $n\textrm {th}$ order equation, Monatsh. Math. 69 (1965), 427–430. MR 185217, DOI 10.1007/BF01299949
- D. Willett, Asymptotic behaviour of disconjugate $n$th order differential equations, Canadian J. Math. 23 (1971), 293–314. MR 293196, DOI 10.4153/CJM-1971-030-4
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 35 (1972), 457-463
- MSC: Primary 34D05
- DOI: https://doi.org/10.1090/S0002-9939-1972-0301313-7
- MathSciNet review: 0301313