The Schur index and roots of unity
HTML articles powered by AMS MathViewer
- by G. J. Janusz
- Proc. Amer. Math. Soc. 35 (1972), 387-388
- DOI: https://doi.org/10.1090/S0002-9939-1972-0302748-9
- PDF | Request permission
Abstract:
A short proof is given for the main step in the proof of the theorem of Benard and Schacher which asserts that if the Schur index of a character $\chi$ of a finite group is m then the mth roots of unity lie in the field of values $Q(\chi )$.References
- Charles Ford, Some results on the Schur index of a representation of a finite group, Canadian J. Math. 22 (1970), 626–640. MR 260891, DOI 10.4153/CJM-1970-069-3
- Mark Benard and Murray M. Schacher, The Schur subgroup. II, J. Algebra 22 (1972), 378–385. MR 302747, DOI 10.1016/0021-8693(72)90155-X
- Ernst Witt, Die algebraische Struktur des Gruppenringes einer endlichen Gruppe über einem Zahlkörper, J. Reine Angew. Math. 190 (1952), 231–245 (German). MR 53944, DOI 10.1515/crll.1952.190.231
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 35 (1972), 387-388
- MSC: Primary 20C05; Secondary 16A16
- DOI: https://doi.org/10.1090/S0002-9939-1972-0302748-9
- MathSciNet review: 0302748