## Some properties of special functions derived from the theory of continuous transformation groups

HTML articles powered by AMS MathViewer

- by Mrinal Kanti Das
- Proc. Amer. Math. Soc.
**35**(1972), 565-573 - DOI: https://doi.org/10.1090/S0002-9939-1972-0302979-8
- PDF | Request permission

## Abstract:

The theory of continuous transformation groups is utilized in the study of some properties of special functions. On constructing the continuous transformation groups corresponding to a suitably defined infinitesimal transformation, a bilateral generating relation involving Laguerre polynomials $\{ L_n^{(\alpha )}(x)\}$ is obtained in $\S 2$. It is shown to be a generalisation of Brafman’s result. In the last section raising and lowering operators for $\{ P_n^{(\alpha ,\beta - n)}(x)\}$ and their commutator are introduced and on showing that they generate a 3-dimensional Lie algebra, the idea of c.t. groups is employed to establish a generating relation involving $\{ P_n^{(\alpha ,\beta - n)}(x)\}$ which is seen to yield a number of known results. Moreover, a bilateral generating relation involving $\{ P_n^{(\alpha ,\beta - n)}(x)\}$ is obtained; this is seen to be a generalisation of a well-known relation due to Weisner.## References

- Bruria Kaufman,
*Special functions of mathematical physics from the viewpoint of Lie algebra*, J. Mathematical Phys.**7**(1966), 447–457. MR**197788**, DOI 10.1063/1.1704953 - Santi Kumar Chatterjea,
*Quelques fonctions génératrices des polynômes d’Hermite, du point de vue de l’algèbre de Lie*, C. R. Acad. Sci. Paris Sér. A-B**268**(1969), A600–A602 (French). MR**240360**
M. K. Das, - Mrinal Kanti Das,
*Sur les polynômes de Bessel*, C. R. Acad. Sci. Paris Sér. A-B**271**(1970), A408–A411 (French). MR**271417** - V. K. Varma,
*Double hypergeometric functions as generating functions of the Jacobi and Laguerre polynomials*, J. Indian Math. Soc. (N.S.)**32**(1968), 1–5. MR**241725** - Earl D. Rainville,
*Special functions*, The Macmillan Company, New York, 1960. MR**0107725** - Louis Weisner,
*Group-theoretic origin of certain generating functions*, Pacific J. Math.**5**(1955), 1033–1039. MR**86905** - Fred Brafman,
*Some generating functions for Laguerre and Hermite polynomials*, Canadian J. Math.**9**(1957), 180–187. MR**85363**, DOI 10.4153/CJM-1957-020-1 - G. P. Srivastava,
*Some bilinear generating functions*, Proc. Nat. Acad. Sci. U.S.A.**64**(1969), 462–465. MR**267150**, DOI 10.1073/pnas.64.2.462

*Sur les polynômes de Laguerre, du point de vue de l’algèbre de Lie*, C. R. Acad. Sci. Paris Sér. A-B

**270**(1970), A380-A383. MR

**41**#2093. —,

*Sur les polynômes d’Hermite, du point de vue de l’algèbre de Lie*, C. R. Acad. Sci. Paris Sér. A-B

**270**(1970), A452-A455. MR

**41**#3845.

## Bibliographic Information

- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**35**(1972), 565-573 - MSC: Primary 33A75
- DOI: https://doi.org/10.1090/S0002-9939-1972-0302979-8
- MathSciNet review: 0302979