Some unbounded functions of regular growth
HTML articles powered by AMS MathViewer
- by H. Arthur DeKleine and Vladimir Drobot
- Proc. Amer. Math. Soc. 35 (1972), 471-476
- DOI: https://doi.org/10.1090/S0002-9939-1972-0303025-2
- PDF | Request permission
Abstract:
The concept of regular growth for unbounded nondecreasing functions has its origin in the study of the asymptotic behavior of solutions for the second order equation $u'' + a(t)u = 0$. In this paper we give sufficient conditions for a continuous, differentiable function $a(t)$ to possess the property that its logarithm increases regularly. We also show that the logarithm of a continuous unbounded concave or convex function increases regularly.References
- I. Bihari, Extension of a theorem of Armellini-Tonelli-Sansone to the nonlinear equation $u''+a(t)f(u)=0$, Magyar Tud. Akad. Mat. Kutató Int. Közl. 7 (1962), 63–68 (English, with Russian summary). MR 149002
- Lamberto Cesari, Asymptotic behavior and stability problems in ordinary differential equations, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Heft 16, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1959. MR 0118904
- Herbert Arthur DeKleine, A counterexample to a conjecture in second-order linear equations, Michigan Math. J. 17 (1970), 29–32. MR 261071
- Philip Hartman, On oscillators with large frequencies, Boll. Un. Mat. Ital. (3) 14 (1959), 62–65. MR 0104859
- Philip Hartman, The existence of large or small solutions of linear differential equations, Duke Math. J. 28 (1961), 421–429. MR 130432
- A. Meir, D. Willett, and J. S. W. Wong, On the asymptotic behavior of the solutions of $x^{\prime \prime }+a(t)x=0$, Michigan Math. J. 14 (1967), 47–52. MR 209566
- E. J. McShane, On the solutions of the differential equation $y^{\prime \prime }+p^{2}y=0$, Proc. Amer. Math. Soc. 17 (1966), 55–61. MR 188553, DOI 10.1090/S0002-9939-1966-0188553-2
- Z. Opial, Sur l’équation différentielle $u''+a(t)u=0$, Ann. Polon. Math. 5 (1958), 77–93 (French). MR 97579, DOI 10.4064/ap-5-1-77-93
- Giovanni Sansone, Equazioni Differenziali nel Campo Reale, Vol. 2, Nicola Zanichelli, Bologna, 1949 (Italian). 2d ed. MR 0030663
- D. Willett, On an example in second order linear ordinary differential equations, Proc. Amer. Math. Soc. 17 (1966), 1263–1266. MR 201730, DOI 10.1090/S0002-9939-1966-0201730-7
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 35 (1972), 471-476
- MSC: Primary 34D05
- DOI: https://doi.org/10.1090/S0002-9939-1972-0303025-2
- MathSciNet review: 0303025