A note on Kaplun limits and double asymptotics
HTML articles powered by AMS MathViewer
- by D. D. Freund
- Proc. Amer. Math. Soc. 35 (1972), 464-470
- DOI: https://doi.org/10.1090/S0002-9939-1972-0303189-0
- PDF | Request permission
Abstract:
The foundation of “inner-outer” expansions and allied methods is examined. Two limit definitions (both yielding Kaplun’s extension theorem) are compared in regard to double limit asymptotics.References
- R. E. Meyer, Near-steady transition waves of a collisionless plasma, J. Mathematical Phys. 8 (1967), 1676-1684.
- Milton Van Dyke, Perturbation methods in fluid mechanics, Applied Mathematics and Mechanics, Vol. 8, Academic Press, New York-London, 1964. MR 0176702
- Julian D. Cole, Perturbation methods in applied mathematics, Blaisdell Publishing Co. [Ginn and Co.], Waltham, Mass.-Toronto, Ont.-London, 1968. MR 0246537 Lynn M. Olson, Near-steady oblique shock waves in collisionless plasma, MRC Technical Summary Report No. 1031, University of Wisconsin, Madison, Wis., 1970.
- Paco A. Lagerstrom and Louis N. Howard (eds.), Fluid mechanics and singular perturbations: A collection of papers by Saul Kaplun, Academic Press, New York-London, 1967. MR 0214326
- R. E. Meyer, On the approximation of double limits by single limits and the Kaplun extension theorem, J. Inst. Math. Appl. 3 (1967), 245–249. MR 230509
- L. E. Fraenkel, On the method of matched asymptotic expansions. I. A matching principle, Proc. Cambridge Philos. Soc. 65 (1969), 209–231. MR 237898, DOI 10.1017/s0305004100044212 M. C. Shen, Asymptotic theory of unsteady three-dimensional waves in a channel of arbitrary cross section, SIAM J. Appl. Math. 17 (1969), 260-271.
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 35 (1972), 464-470
- MSC: Primary 41A60; Secondary 35G20
- DOI: https://doi.org/10.1090/S0002-9939-1972-0303189-0
- MathSciNet review: 0303189