COMMUTANTS THAT DO NOT DILATE

DOUGLAS N. CLARK

Abstract. The Lifting Theorem deals with dilation of the commutant of an operator T_i on Hilbert space. In this note, counterexamples are given to generalizations of the theorem involving N commuting operators T_1, T_2, \ldots, T_N.

In general terms, the Lifting Theorem for restricted shifts states that if T is an operator commuting with the projection of the shift S_1 (on H^2) to one of its star-invariant subspaces, then T may be dilated, without changing its norm, to an operator commuting with S_1. The theorem was first proved by Sarason [3], and has been extended by Sz.-Nagy and Foiaș to vector-valued H^2 spaces [4], and other, more general, situations [5].

To state the theorem more precisely, let us introduce some notation which at once suggests a different sort of generalization. Let U^N denote the polydisk in N complex variables z_1, \ldots, z_N. Let \mathcal{H} be a separable Hilbert space with inner product $\langle \cdot, \cdot \rangle$, and let $H^2(\mathcal{H})$ denote the H^2 space of U^N based on \mathcal{H}. Thus an element of $H^2(\mathcal{H})$ has the form

$$f(z_1, \ldots, z_N) = \sum a_J z_{j_1}^1 z_{j_2}^2 \cdots z_{j_N}^N$$

where the sum is over $J = (j_1, \ldots, j_N) \in \mathbb{Z}_+^N$, where $a_J \in \mathcal{H}$, and where $\sum ||a_J||^2 < \infty$. Let S_1, \ldots, S_N denote the shifts $(S_j f = z_j f)$ on $H^2(\mathcal{H})$, let M denote a subspace of $H^2(\mathcal{H})$, invariant under S_1, \ldots, S_N, and define

$$T_j f = P_M z_j f, \quad f \in M^\perp = H^2(\mathcal{H}) \ominus M.$$

The above Lifting Theorem now states that, if $N=1$ and if T commutes with T_1, then there is a dilation S of T which commutes with S_1 and which satisfies $||S|| = ||T||$.

The purpose of this note is to give examples of invariant subspaces M in $H^2(\mathcal{H})$ and $H^3(\mathcal{H})$ ($=H^2_C(U^3)$, C the complex numbers) and of bounded operators T on M^\perp, commuting with the T_j, but having no (bounded) dilation commuting with the S_j. Such a T always has an
unbounded dilation commuting with the S_j, as I proved in [1]. For an example involving a different dilation problem for commuting operators, see Parrott [2].

Our first example has to do with norms of dilations in $H^2(U^2)$ and generalizes an example I gave in [1].

Example 1. Let M_n denote the invariant subspace of $H^2(U^2)$ generated by the homogeneous polynomials of degree n. If $p(z_1, z_2)$ is a homogeneous polynomial of degree n and T_p is the operator of multiplication by p and projection on M_{n+1}^\perp, then $\|T_p\| = \|p\|_2$, but the minimal norm of a dilation of T_p which commutes with S_1 and S_2 is $\|p\|_\infty$.

The first statement comes from the fact that T_p has rank 1. In fact, $T_p1 = p$ and $T_p x = 0$ for $x \in M_{n+1}^\perp \cap \{1\}$.

To prove the second statement, note that an operator T on $H^2(U^2)$ which commutes with S_1 and S_2 and which is a dilation of T_p must consist of multiplication by a function h of the form $p + f$, where $f \in M_{n+1}^\perp$. Pick $\alpha = (\alpha_1, \alpha_2)$ with $|\alpha_1| = |\alpha_2|$ and $|p(\alpha)| = \|p\|_\infty$. If $h(\lambda) = p(\alpha) + f(\lambda \alpha_1, \lambda \alpha_2) / \lambda^n$, then h is holomorphic in $|\lambda| < 1$ and $|h(0)| = \|p\|_\infty$. We have

$$\|T\| = \|p + f\|_\infty \geq \|p(\lambda \alpha) + f(\lambda \alpha)\|_\infty$$

where the last norm is the one variable L^∞ norm. Further,

$$\|p(\lambda \alpha) + f(\lambda \alpha)\|_\infty = \|\lambda^n p(\alpha) + f(\lambda \alpha)\|_\infty = \|\lambda^n h(\lambda)\|_\infty$$

$$= \|h(\lambda)\|_\infty \geq |h(0)| = \|p\|_\infty.$$

This completes Example 1.

Example 2. There is an invariant subspace M of $H^2(U^2)$ and an operator T on M^\perp commuting with T_1 and T_2 which has no bounded dilation S which commutes with S_1 and S_2.

Let x_1, x_2, \cdots be an orthonormal basis of \mathcal{H}, and let M consist of functions of the form $\sum a_{nm} z_1^n z_2^m$ where a_{nm} lies in the span of $x_1, x_2, \cdots, x_{n+m-1}$. Let Q_n denote the projection of \mathcal{H} on the span of x_n, and let p_1, p_2, \cdots be homogeneous polynomials of degrees 1, 2, \cdots, which satisfy

(1) $\sum_{n=1}^{\infty} \|p_n\|_2^2 < \infty$

and

(2) $\|p_n\|_\infty \to \infty$.

For $x \in M_1^\perp$,

$$x = \sum_{j,k=0}^\infty a_{jk} z_1^j z_2^k,$$

2 This proof incorporates simplifications pointed out to me by H. Alexander.
where a_{jk} is a linear combination of x_{j+k}, x_{j+k+1}, \cdots. Let T'_n denote the operator on M^\perp of multiplication by p_nQ_n and projection on M^\perp. Thus

$$T'_n x = P_{M^n} p_n \sum_{j+k \leq n} z^n_{j+k} (Q_n a_{jk}),$$

and since $Q_n a_{jk} = \langle a_{jk}, x_n \rangle x_n$, we have $p_n z^n_{j+k} Q_n a_{jk} \in M$ if $j + k > 0$. It follows that

$$(3) \quad T'_n x = p_n Q_n a_{00} = \langle a_{00}, x_n \rangle p_n x_n.$$

Clearly $T'_n \cdot T_m = T'_m \cdot T_n$ if $n \neq m$ and so, by (1) and (3), $T = \sum_{n=0}^{\infty} T'_n$ exists in the strong operator topology and T commutes with T_1 and T_2.

Now any (bounded) dilation S of T which commutes with S_1 and S_2 must have the form $Sf = p(z_1, z_2) f$ where p is an analytic function in U^2 whose values are operators on \mathcal{H} and $\|p(z_1, z_2)\| \leq K$, say. In addition, S maps M into M and, if $f \in M^\perp$, $p(z_1, z_2) f = Tf + x$, where $x \in M$. If $x \in M$, if $\langle \cdot, \cdot \rangle$ denotes the inner product in \mathcal{H}, and if $(z_1, z_2) \in U^2$, we have

$$\langle x(z_1, z_2), x_n \rangle = \sum_{j+k = n+1}^{\infty} \langle a_{jk}, x_n \rangle z^n_{j+k}.$$

It follows that

$$K \geq |\langle Sx_n, x_n \rangle| = |\langle Tx_n, x_n \rangle + \langle x, x_n \rangle|$$

$$= |p_n(z_1, z_2) + \sum_{j+k = n+1}^{\infty} \langle a_{jk}, x_n \rangle z^n_{j+k}|$$

for $(z_1, z_2) \in U$ and for all n. This contradicts Example 1 and (2).

Example 3. There is an invariant subspace M of $H^2(U^3) = H^2_2(U^3)$ and an operator T on M^\perp commuting with T_1, T_2 and T_3 which has no bounded dilation S which commutes with S_1, S_2 and S_3.

Let $B(z)$ be a Blaschke product in one variable

$$B(z) = \prod_{n=1}^{\infty} \frac{-\bar{a}_n}{|a_n|} \frac{z - a_n}{1 - \bar{a}_n z},$$

whose zeros are distinct but otherwise unspecified for the moment. Let

$$B_m(z) = \prod_{n=m}^{\infty} \frac{-\bar{a}_n}{|a_n|} \frac{z - a_n}{1 - \bar{a}_n z},$$

and let M_n be the invariant subspace of $H^2(U^3)$ generated by the homogeneous polynomials in z_1 and z_2 of degree n. Let M denote the closure of the span of

$$B_1(z_3) M_1 \cup B_2(z_3) M_2 \cup \cdots.$$
Thus M is the invariant subspace of $H^2(U^3)$ generated by all functions of the form $B_j(z_3)p(z_1, z_2)$ where p is a homogeneous polynomial of degree j.

Again we choose homogeneous polynomials p_0, p_1, \cdots in z_1, z_2 of degrees $0, 1, \cdots$ and satisfying (1) and (2). This time, T'_n is the operator on M of multiplication by $p_{n-1}B_n$ and projection on M'.

Clearly $T'_n f = 0$ (i.e. $p_{n-1}B_n f \in M$) if either $f \in M_1$ or $f(a_{n-1}) = 0$. Thus T'_n has rank 1 and is zero on the orthogonal complement of the span of the function

$$F(z_1, z_2, z_3) = (1 - \tilde{a}_{n-1}z_2)^{-1}.$$

Furthermore,

$$T'_n F = p_{n-1}B_n(1 - \tilde{a}_{n-1}z_2)^{-1}$$

and

$$\|p_{n-1}B_n(1 - \tilde{a}_{n-1}z_2)^{-1}\| = \|p_{n-1}\| \|(1 - \tilde{a}_{n-1}z_2)^{-1}\|,$$

so that $\|T'_n\| \leq \|p_{n-1}\|$. In addition, (4) implies that the ranges of the T'_n are orthogonal, so we may conclude that $T = \sum T'_n$ exists in the strong operator topology and commutes with T_1, T_2 and T_3. We claim there is no function $f \in M$ such that

$$\left\| \sum_{n=1}^{\infty} p_{n-1}(z_1, z_2)B_n(z_3) + f \right\|_\infty = K < \infty.$$

In fact, if $f \in M, f(z_1, z_2, a_n)$ has homogeneous degree at least $n+1$, so that, setting $z_3 = a_n$ in (5) gives

$$\|p_nB_{n+1}(a_n) + f(z_1, z_2, a_n)\|_\infty \leq K,$$

and $f(z_1, z_2, a_n) \in M_{n+1}$. If we now assume that B is chosen so that $B_{n+1}(a_n)$ is bounded from 0 (i.e. if the sequence $\{a_n\}$ is interpolating) we have obtained a contradiction.

References

Department of Mathematics, University of California, Los Angeles, California 90024

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use