Sums of distances between points on a sphere
HTML articles powered by AMS MathViewer
- by Kenneth B. Stolarsky
- Proc. Amer. Math. Soc. 35 (1972), 547-549
- DOI: https://doi.org/10.1090/S0002-9939-1972-0303418-3
- PDF | Request permission
Abstract:
An upper bound for the sum of the $\lambda$th powers of all distances determined by N points on a unit sphere is given for $0 \leqq \lambda \leqq 1$.References
- R. Alexander, On the set of distances determined by n points on the 2-sphere (in preparation).
R. Alexander and K. B. Stolarsky, Some extremal problems of distance geometry (in preparation).
- Göran Björck, Distributions of positive mass, which maximize a certain generalized energy integral, Ark. Mat. 3 (1956), 255–269. MR 78470, DOI 10.1007/BF02589412
- L. Fejes Tóth, On the sum of distances determined by a pointset, Acta Math. Acad. Sci. Hungar. 7 (1956), 397–401 (English, with Russian summary). MR 107212, DOI 10.1007/BF02020534 G. Pólya and G. Szegö, Über den transfiniten Durchmesser (Kapazitätskonstante) von ebenen und räumlichen Punktmengen, J. Reine Angew. Math. 165 (1931), 4-49.
- I. J. Schoenberg, On certain metric spaces arising from Euclidean spaces by a change of metric and their imbedding in Hilbert space, Ann. of Math. (2) 38 (1937), no. 4, 787–793. MR 1503370, DOI 10.2307/1968835
- I. J. Schoenberg, Metric spaces and positive definite functions, Trans. Amer. Math. Soc. 44 (1938), no. 3, 522–536. MR 1501980, DOI 10.1090/S0002-9947-1938-1501980-0
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 35 (1972), 547-549
- MSC: Primary 52A40
- DOI: https://doi.org/10.1090/S0002-9939-1972-0303418-3
- MathSciNet review: 0303418