Filter characterizations of $C$- and $C^{\ast }$-embeddings
HTML articles powered by AMS MathViewer
- by John William Green
- Proc. Amer. Math. Soc. 35 (1972), 574-580
- DOI: https://doi.org/10.1090/S0002-9939-1972-0303497-3
- PDF | Request permission
Abstract:
A filter F on a space S is completely regular if the complement of each set in F is completely separated from some set in F. A characterization of the Stone-Čech compactification due to Alexandroff is used to establish the following theorem. Suppose K is a subspace of a Tychonoff space S. K is ${C^ \ast }$-embedded in S if and only if the trace on K of every maximal completely regular filter on S intersecting K is maximal completely regular on K. A similar characterization of the C-embedded subsets of a Tychonoff space is obtained as are several related results.References
- P. S. Aleksandrov, Bikompakte Erweiterung topologischer Räume, Mat. Sb. 5 (47) (1939), 403-423. (Russian) MR 1, 318.
- R. A. Alò and H. L. Shapiro, ${\cal Z}$-realcompactifications and normal bases, J. Austral. Math. Soc. 9 (1969), 489–495. MR 0242121, DOI 10.1017/S1446788700007448
- Bernhard Banaschewski, Über zwei Extremaleigenschaften topologischer Räume, Math. Nachr. 13 (1955), 141–150 (German). MR 70993, DOI 10.1002/mana.19550130303 N. Bourbaki, Éléments de mathématique. Part. 1. Les structures fondamentales de l’analyse. Livre III: Topologie générale, Actualités Sci. Indust., no. 1029, Hermann, Paris, 1947; English transl., Addison-Wesley, Reading, Mass., 1966. MR 9, 261; MR 34 #5044b.
- Ky Fan and Noel Gottesman, On compactifications of Freudenthal and Wallman, Indag. Math. 14 (1952), 504–510. Nederl. Akad. Wetensch. Proc. Ser. A 55. MR 0052761, DOI 10.1016/S1385-7258(52)50071-4
- Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199, DOI 10.1007/978-1-4615-7819-2
- O. Njȧstad, A note on compactification by bounding systems, J. London Math. Soc. 40 (1965), 526–532. MR 193614, DOI 10.1112/jlms/s1-40.1.526
- R. M. Stephenson Jr., Product spaces for which the Stone-Weierstrass theorem holds, Proc. Amer. Math. Soc. 21 (1969), 284–288. MR 250260, DOI 10.1090/S0002-9939-1969-0250260-8
- F. J. Wagner, Note on compactification. I, II, Indag. Math. 19 (1957), 171–176, 177–181. Nederl. Akad. Wetensch. Proc. Ser. A 60. MR 0087919, DOI 10.1016/S1385-7258(57)50022-X
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 35 (1972), 574-580
- MSC: Primary 54C45
- DOI: https://doi.org/10.1090/S0002-9939-1972-0303497-3
- MathSciNet review: 0303497