Toroidal arcs are cellular
HTML articles powered by AMS MathViewer
- by Tom Knoblauch
- Proc. Amer. Math. Soc. 35 (1972), 607-610
- DOI: https://doi.org/10.1090/S0002-9939-1972-0303514-0
- PDF | Request permission
Abstract:
We prove that a toroidal, cell-like, locally connected continuum is cellular.References
- J. W. Alexander, On the subdivision of 3-space by a polyhedron, Proc. Nat. Acad. Sci. U.S.A. 10 (1924), 6-8.
- R. H. Bing, Point-like decompositions of $E^{3}$, Fund. Math. 50 (1961/62), 431β453. MR 137104, DOI 10.4064/fm-50-4-431-453
- Robert J. Daverman, On the number of nonpiercing points in certain crumpled cubes, Pacific J. Math. 34 (1970), 33β43. MR 271920
- Ralph H. Fox and Emil Artin, Some wild cells and spheres in three-dimensional space, Ann. of Math. (2) 49 (1948), 979β990. MR 27512, DOI 10.2307/1969408
- J. M. Kister and D. R. McMillan Jr., Locally euclidean factors of $E^{4}$ which cannot be imbedded in $E^{3}$, Ann. of Math. (2) 76 (1962), 541β546. MR 144322, DOI 10.2307/1970374
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 35 (1972), 607-610
- MSC: Primary 54F15
- DOI: https://doi.org/10.1090/S0002-9939-1972-0303514-0
- MathSciNet review: 0303514