Knots without unknotted incompressible spanning surfaces
HTML articles powered by AMS MathViewer
- by Herbert C. Lyon
- Proc. Amer. Math. Soc. 35 (1972), 617-620
- DOI: https://doi.org/10.1090/S0002-9939-1972-0303526-7
- PDF | Request permission
Abstract:
We construct a tame knot in ${S^3}$ which has no unknotted incompressible spanning surface.References
- R. H. Fox, A quick trip through knot theory, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 120–167. MR 0140099
- John Hempel, A simply connected $3$-manifold is $S^{3}$ if it is the sum of a solid torus and the complement of a torus knot, Proc. Amer. Math. Soc. 15 (1964), 154–158. MR 157365, DOI 10.1090/S0002-9939-1964-0157365-6
- Herbert C. Lyon, Incompressible surfaces in knot spaces, Trans. Amer. Math. Soc. 157 (1971), 53–62. MR 275412, DOI 10.1090/S0002-9947-1971-0275412-6
- Herbert C. Lyon, Incompressible surfaces in knot spaces, Trans. Amer. Math. Soc. 157 (1971), 53–62. MR 275412, DOI 10.1090/S0002-9947-1971-0275412-6 P. M. Rice, On knot groups, University of Georgia, Athens, Ga. (Preprint).
- C. B. Schaufele, The commutator group of a doubled knot, Duke Math. J. 34 (1967), 677–681. MR 216495
- Friedhelm Waldhausen, On irreducible $3$-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56–88. MR 224099, DOI 10.2307/1970594
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 35 (1972), 617-620
- MSC: Primary 55A25
- DOI: https://doi.org/10.1090/S0002-9939-1972-0303526-7
- MathSciNet review: 0303526