FURTHER COMMENTS ON THE CONTINUITY OF DISTRIBUTION FUNCTIONS OBTAINED BY SUPERPOSITION

BARTHEL W. HUFF

Abstract. Let \(\{X(t)\} \) be a differential process with discontinuous distributions and \(Y \) a nonnegative random variable independent of the process. The superposition \(X(Y) \) has a continuous probability distribution if and only if the process has nonzero trend term and \(Y \) has continuous distribution. The nature of discontinuities of the probability distribution of the superposition is indicated.

We continue the notation and terminology of [1] and [3]. Let \(\{X(t)|t \in [0, \infty)\} \) be a differential process (homogeneous process) with discontinuous distributions. Then

\[
X(t) = \tau_X t + X^*(t),
\]

where

\[
f_{X^*(t)}(u) = Ee^{iuX^*(t)} = \exp\left\{ t \int_{-\infty}^{\infty} (e^{iu} - 1) \, dM_X(x) \right\}
\]

and the Lévy spectral function satisfies

\[
\int_{-\infty}^{\infty} dM_X(x) = \int_{-\infty}^{0} dM_X(x) + \int_{0}^{\infty} dM_X(x) = \mu + \lambda < \infty.
\]

\(\tau_X \) is the trend term of the process. Let \(Y \geq 0 \) be independent of the \(\{X(t)\} \) process and consider the superposition \(X(Y) \). We shall show that \(X(Y) \) has continuous distribution if and only if the process has nonzero trend term and \(Y \) has continuous distribution. The nature of discontinuities will be indicated.

Lemma 1. Let \(\{X^*(t)\} \) be a differential process with discontinuous distributions and no trend term. Then

\[
\text{Cont } F_{X^*(t)}(\cdot) = \text{Cont } F_{X^*(t)}(\cdot), \quad \forall t > 0.
\]

Received by the editors August 20, 1971 and, in revised form, February 15, 1972.

AMS 1969 subject classifications. Primary 6020; Secondary 6065.

Key words and phrases. Superposition, differential process, trend term, Lévy spectral function, random sum.

© American Mathematical Society 1972
Proof. Reviewing the argument of Theorem 2 in [1], we see that \(F_{X^1(t)}(\cdot) \) is the distribution function of the random sum \(Z(t) = X_1 + \cdots + X_{Y(t)} \), where \(X_1, X_2, \ldots \) are independent with common distribution

\[
G(x) = M_X(x)(\mu + \lambda), \quad x < 0,
\]

\[
= \mu(\mu + \lambda), \quad x = 0,
\]

\[
= (\mu + \lambda + M_X(x))(\mu + \lambda), \quad x > 0,
\]

and \(\mathcal{L}(Y(t)) = \mathcal{P}(i(\mu + \lambda)). \) Thus \(f_{X^1(t)}(u) = \sum_{k=0}^{\infty} (f_{X^1}(u))^k P[Y(t) = k] \). Let \(j_{X^1(t)}(a) = F_{X^1(t)}(a) - F_{X^1(t)}(a-) \) be the jump of \(F_{X^1(t)}(\cdot) \) at \(a \).

Applying Theorem 3.2.3 of [2], Fubini's Theorem, and the Lebesgue Dominated Convergence Theorem, we obtain

\[
j_{X^1(t)}(a) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} e^{-iuj_{X^1(t)}(u)} du
\]

\[
= \lim_{T \to \infty} \frac{1}{2T} \int_{-\infty}^{\infty} e^{-iu} \sum_{k=0}^{\infty} (f_{X^1}(u))^k P[Y(t) = k] du
\]

\[
= \lim_{T \to \infty} \sum_{k=0}^{\infty} \frac{1}{2T} \int_{-T}^{T} e^{-iu} (f_{X^1}(u))^k P[Y(t) = k]
\]

\[
= e^{-i(\mu + \lambda)} + \sum_{k=1}^{\infty} j_{X^1(t)}(a) P[Y(t) = k], \quad a = 0,
\]

\[
= \sum_{k=1}^{\infty} j_{X^1(t)}(a) P[Y(t) = k], \quad a \neq 0.
\]

Thus \(F_{X^1(t)}(\cdot) \) has a jump at \(a \) if and only if some \(F_{X^1(t)}(\cdot) \) has a jump at \(a \); i.e.,

\[
\overline{\text{Cont} F_{X^1(t)}(\cdot)} = \{0\} \cup \overline{\text{Cont}} F_{X^1(\cdot)} \cup \cdots, \quad \forall t > 0,
\]

and the lemma is proved. \(\square \)

Note that \(j_{X^1(t)}(a) = \sum_{k=0}^{\infty} j_{X^1(t)}(a) P[Y(t) = k] \) and the Helly-Bray Theorem imply that \(j_{X^1(t)}(a) \) is continuous for \(a \) fixed.

Lemma 2. Let \(\{X(t) = \tau_X t + X^*(t)\} \) be a differential process with discontinuous distributions and nonzero trend term. Then for each fixed \(a \), \(\{t | j_{X^1(t)}(a) \neq 0\} \) is at most countable.

Proof. Applying Lemma 1, we note that \(a \notin \text{Cont} F_{X^1(t)}(\cdot) \) if and only if \(a - \tau_X t \notin \text{Cont} F_{X(t)}(\cdot) = \text{Cont} F_{X^1(t)}(\cdot) \). Thus \(j_{X^1(t)}(a) \neq 0 \) if and only if \(t = (a - x)/\tau_X \) for some \(x \notin \text{Cont} F_{X^1(t)}(\cdot) \). \(\square \)
Theorem 1. Let \(Y \geq 0 \) be independent of the differential process \(\{X(t)\} \). Then for each fixed \(a \)

\[
j_X(Y)(a) = \int_0^\infty j_{X(0)}(a) \, dF_Y(t).
\]

Proof. Using the arguments of Lemma 1, we obtain

\[
j_X(Y)(a) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^T e^{-iau} f_{X(Y)}(u) \, du
\]

\[
= \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^T e^{-iau} f_{X(0)}(u) \, dF_Y(t) \, du
\]

\[
= \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^T f_{X(0)}(u) \, dF_Y(t)
\]

\[
= \int_0^\infty j_{X(0)}(a) \, dF_Y(t).
\]

Corollary 1. Let \(\{X(t)\} \) be a differential process with discontinuous distributions and nonzero trend term. Suppose \(Y \geq 0 \) is independent of the process and has continuous distribution. Then the superposition \(X(Y) \) has continuous distribution.

Proof. The integrand in (1) vanishes a.e. by Lemma 2 and \(Y \) has no point masses.

Corollary 2. Let \(\{X(t)\} \) be a differential process with discontinuous distributions and nonzero trend term. Suppose \(Y \geq 0 \) is independent of the process and has a discontinuous distribution. Then \(X(Y) \) has a discontinuous distribution with jumps occurring at precisely those points of the form \(a = t_0 + \xi \), where \(t_0 \notin \text{Cont } F_Y(\cdot) \) and \(\xi \notin \text{Cont } F_{X^*(t)}(\cdot) \).

Proof. The indicated points are precisely those where a positive value of the integrand in (1) coincides with a point mass of \(Y \).

Corollary 3. Let \(\{X^*(t)\} \) be a differential process with discontinuous distributions and no trend term. Suppose \(Y \geq 0 \) is independent of the process and \(P[Y=0]<1 \). Then \(X^*(Y) \) has discontinuous distribution and

\[
\text{Cont } F_{X^*(Y)}(\cdot) = \text{Cont } F_{X^*(t)}(\cdot).
\]

Proof. The integrand in (1) vanishes if \(a \in \text{Cont } F_{X^*(t)}(\cdot) \). If \(a \notin \text{Cont } F_{X^*(t)}(\cdot) \), then (1) and the observation that \(j_{X^*(t)}(a) \) is continuous and positive imply that \(j_{X^*(t)}(a) > 0 \).

We also note that (1) immediately yields Corollary 1A of [1].
REFERENCES

