On subfields of countable codimension
HTML articles powered by AMS MathViewer
- by A. Białynicki-Birula
- Proc. Amer. Math. Soc. 35 (1972), 354-356
- DOI: https://doi.org/10.1090/S0002-9939-1972-0304357-4
- PDF | Request permission
Abstract:
In [2] the authors asked if any two real closed subfields $R, R’$ of the field of complex numbers C such that $R(\surd ( - 1)) = R’(\surd ( - 1)) = C$ are isomorphic. It is not difficult to see that the answer is negative. This is proved in the first part of the note. In the second we study the problem if any field which is not prime contains a proper subfield of countable (finite or infinite) codimension.References
- Nathan Jacobson, Lectures in abstract algebra. Vol III: Theory of fields and Galois theory, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London-New York, 1964. MR 0172871, DOI 10.1007/978-1-4612-9872-4
- J. Knopfmacher and A. M. Sinclair, Fields with few extensions, Proc. Amer. Math. Soc. 29 (1971), 255–258. MR 274426, DOI 10.1090/S0002-9939-1971-0274426-5
- Serge Lang, Algebra, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965. MR 0197234
- Serge Lang, Algebraic numbers, Addison-Wesley Publishing Co., Inc., Reading, Mass.-Palo Alto-London, 1964. MR 0160763
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 35 (1972), 354-356
- MSC: Primary 12F99
- DOI: https://doi.org/10.1090/S0002-9939-1972-0304357-4
- MathSciNet review: 0304357