INTEGRABLY PARALLELIZABLE MANIFOLDS
VAGN LUNDSGAARD HANSEN

Abstract. A smooth manifold M^n is called integrably parallelizable if there exists an atlas for the smooth structure on M^n such that all differentials in overlap between charts are equal to the identity map of the model for M^n. We show that the class of connected, integrably parallelizable, n-dimensional smooth manifolds consists precisely of the open parallelizable manifolds and manifolds diffeomorphic to the n-torus.

1. Introduction. In this note M^n is an n-dimensional, paracompact smooth manifold without boundary, and G is an arbitrary subgroup of the general linear group $\text{Gl}(n, R)$ on R^n.

Definition. M^n is called G-reducible if the structural group of the tangent bundle for M^n can be reduced from $\text{Gl}(n, R)$ to G. M^n is called integrably G-reducible if there exists an atlas $\{(U_i, \theta_i)\}$ for the smooth structure on M^n such that the differential in overlap between charts $(\theta_i \circ \theta_j^{-1})_x$ belongs to G for all $x \in \theta_j(U_i \cap U_j) \subseteq \mathbb{R}^n$ and all i, j in the index set for the atlas.

It is clear that an integrably G-reducible manifold is G-reducible and therefore the following problem naturally arises.

Problem. Classify for a given G those G-reducible manifolds which are integrably G-reducible.

Let us illustrate this problem with two examples.

Example 1. Let $G = \text{O}(n)$ be the orthogonal group. Any manifold M^n is $\text{O}(n)$-reducible, since it admits a Riemannian metric. On the other hand it is easy to see that M^n is integrably $\text{O}(n)$-reducible if and only if it admits a flat Riemannian metric. (A flat Riemannian manifold is locally isometric to \mathbb{R}^n.)

Example 2. Suppose $n = 2k$ and let $\text{Gl}(k, \mathbb{C})$ be the general linear group on \mathbb{C}^k considered as a subgroup of $\text{Gl}(n, R)$ under the usual identification of \mathbb{C}^k with \mathbb{R}^n. Then M^n is $\text{Gl}(k, \mathbb{C})$-reducible if and only if it admits an almost complex structure and integrably $\text{Gl}(k, \mathbb{C})$-reducible if and only if it admits a complex structure. The classification of the manifolds admitting a complex structure among those admitting an almost complex structure is far from being complete.
For open manifolds Haefliger has recently given a nice reformulation of the problem using the work on foliations of Phillips and Gromov. See e.g. Haefliger [3, Example 2]. Notice here that an integrably G-reducible manifold in our sense in Haefliger’s terminology is a manifold which admits a G-structure. For closed manifolds very little seems to be known.

The purpose of this note is to give the complete solution to the problem in the case where G = G0 is the identity subgroup of GL(n, R). It is easy to see that a manifold M" is G0-reducible if and only if it is parallelizable. Therefore we will call an integrably G0-reducible manifold integrably parallelizable. With this notation we have

Theorem. Let M" be connected and parallelizable. Then M" is integrably parallelizable in precisely the following cases:

(i) M" is open;
(ii) M" is diffeomorphic to the n-dimensional torus T^n = S^1 \times \cdots \times S^1.

This theorem answers a question of J. Eells, who asked for a determination of the finite dimensional integrably parallelizable smooth manifolds after the discovery that any smooth separable Hilbert manifold is integrably parallelizable in a very strong sense (see the remark in §3).

2. **Proof of the theorem.** For the proof of the theorem we need two well-known results which we state as lemmas. First a lemma of Frobenius type (see e.g. Hicks [4, p. 128]).

Lemma 1. Let M" be a parallelizable smooth manifold parallelized by the smooth vector fields, X1, \ldots, Xn. Suppose that these vector fields commute, i.e. all Lie brackets [X_i, X_j] = 0. Then each point x \in M" has a coordinate neighbourhood (U, \theta) such that the restrictions of the vector fields X_1, \ldots, X_n to U coincide with the coordinate vector fields on U.

Recall now that the rank of a smooth manifold M" is the maximal number of linearly independent, commuting smooth vector fields which can be defined on the manifold. Then we have

Lemma 2. A compact, connected smooth manifold M" has rank n if and only if it is diffeomorphic to the n-torus T^n = S^1 \times \cdots \times S^1.

Proof. This result was originally obtained by Willmore [8, Theorem 2]. We offer here an alternative proof. Assume that M" has rank n. There is then an action of R^n (considered with its standard abelian Lie group structure) on M" such that all the orbits for the action are immersed submanifolds; see e.g. Rosenberg [7]. For an arbitrary point x \in M" consider now the isotropy group R^n_x for such an action at x and its quotient group G_x = R^n/R^n_x in R^n. The orbit map o_x : R^n \to M" at x induces then a map
\[\delta_x : G_x \to M^n. \]

Since \(R^n \) is a closed discrete subgroup of \(R^n \), \(G_x \) can be given the structure of an abelian Lie group such that the canonical projection \(R^n \to G_x \) is a Lie group homomorphism. It is easy to prove that \(\delta_x \) is surjective and then it follows immediately that \(\delta_x \) is a diffeomorphism. But then \(G_x \) is a compact, connected abelian Lie group and hence diffeomorphic to \(T^n \). Thus \(M^n \) is also diffeomorphic to \(T^n \). Since conversely \(T^n \) clearly has rank \(n \) the proof is finished.

Proof of the theorem. (i) Suppose first that \(M^n \) is open. By a result of Hirsch [5, Theorem 4.7] there exists then an immersion \(F : M^n \to R^n \). Locally this immersion is a diffeomorphism and we can therefore define an atlas \(\{(U_i, \theta_i)\} \) on \(M^n \), such that \(\theta_i = F|_{U_i} \). But then it is clear that all differentials in overlap between charts \((\theta_i \circ \theta_j^{-1})_* = 1_{R^n} \), the identity on \(R^n \). Hence \(M^n \) is integrably parallelizable.

(ii) Suppose now that \(M^n \) is compact. If we can show that \(M^n \) is integrably parallelizable if and only if it has rank \(n \), then Lemma 2 will finish the proof of the theorem. Suppose therefore first that \(M^n \) has rank \(n \) and choose \(n \) linearly independent, commuting smooth vector fields \(X_1, \ldots, X_n \) on \(M^n \). By Lemma 1 we can define an atlas \(\{(U_i, \theta_i)\} \) on \(M^n \) such that the coordinate vector fields on \(U_i \) coincide with the restrictions of the vector fields \(X_1, \ldots, X_n \) to \(U_i \). But then it is easy to see that all differentials \((\theta_i \circ \theta_j^{-1})_* = 1_{R^n} \) and hence \(M^n \) is integrably parallelizable. Suppose next that \(M^n \) is integrably parallelizable and let \(\{(U_i, \theta_i)\} \) be an atlas on \(M^n \) with all differentials \((\theta_i \circ \theta_j^{-1})_* = 1_{R^n} \). It is then easy to see that there exist \(n \) well-defined smooth vector fields \(X_1, \ldots, X_n \) on \(M^n \), whose restrictions to \(U_i \) coincide with the coordinate vector fields on \(U_i \) for any chart \((U_i, \theta_i) \) in the atlas. Since coordinate vector fields commute it is clear that \(X_1, \ldots, X_n \) are \(n \) linearly independent, commuting smooth vector fields on \(M^n \). Hence \(M^n \) has rank \(n \). As already observed this finishes the proof.

3. **Examples and a remark.** In this section we give first some examples of integrably parallelizable manifolds.

Example 3. Every open Lie group or punctured compact, connected Lie group is integrably parallelizable.

Example 4. Every orientable 3-manifold is parallelizable. Hence the class of connected integrably parallelizable 3-manifolds consists of all open connected orientable 3-manifolds plus diffeomorphic images of the 3-torus.

Example 5. Let \(V_{n,k} \) be the Stiefel manifold of orthonormal \(k \)-frames in \(R^n \). By a theorem of Borel and Hirzebruch [1] this is always a \(\pi \)-manifold (stably trivial tangent bundle). Since an open \(\pi \)-manifold is parallelizable (an open manifold \(M^n \) has a complex of dimension \(n-1 \) as
deformation retract) it follows that all punctured Stiefel manifolds are integrably parallelizable.

Example 6. Let M^n be any compact, connected π-manifold. Then $M^n \times S^1$ is parallelizable but not integrably parallelizable unless M^n is diffeomorphic to T^n. $M^n \times \mathbb{R}^1$ is also parallelizable but as an open manifold now even integrably parallelizable.

We finish with a remark concerning infinite dimensional manifolds.

Remark. Let X be an infinite dimensional separable smooth manifold modelled on the separable Hilbert space E. By a theorem of Kuiper [6] the general linear group $\text{Gl}(E)$ on E is contractible. This implies that X is parallelizable. By the recent theorem of Eells and Elworthy [2] X is diffeomorphic to an open subset of E. The parallelization of X can therefore be realized by a single coordinate chart. This implies of course that X is integrably parallelizable in a very strong sense. In finite dimensions it would have been too much to ask for realization of a parallelization by a single coordinate chart. The punctured 2-torus e.g. is integrably parallelizable in our sense but is not diffeomorphic to an open subset of \mathbb{R}^2.

References

Mathematics Institute, University of Warwick, Coventry, England

Mathematics Institute, University of Aarhus, Aarhus, Denmark

Current address: Mathematics Institute, University of Copenhagen, Copenhagen, Denmark

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use