## A splitting ring of global dimension two

HTML articles powered by AMS MathViewer

- by John D. Fuelberth and Mark L. Teply
- Proc. Amer. Math. Soc.
**35**(1972), 317-324 - DOI: https://doi.org/10.1090/S0002-9939-1972-0306264-X
- PDF | Request permission

## Abstract:

In this paper an example is given of a ring with left global dimension 2 having the property that the singular submodule of any*R*-module

*A*is a direct summand of

*A*. Although the example given is quite specific, the methods can be used to construct a fairly large class of these rings.

## References

- J. S. Alin and S. E. Dickson,
*Goldie’s torsion theory and its derived functor*, Pacific J. Math.**24**(1968), 195–203. MR**227249** - Henri Cartan and Samuel Eilenberg,
*Homological algebra*, Princeton University Press, Princeton, N. J., 1956. MR**0077480** - Vasily C. Cateforis and Francis L. Sandomierski,
*The singular submodule splits off*, J. Algebra**10**(1968), 149–165. MR**241465**, DOI 10.1016/0021-8693(68)90091-4 - John H. Cozzens,
*Homological properties of the ring of differential polynomials*, Bull. Amer. Math. Soc.**76**(1970), 75–79. MR**258886**, DOI 10.1090/S0002-9904-1970-12370-9 - Lawrence Levy,
*Torsion-free and divisible modules over non-integral-domains*, Canadian J. Math.**15**(1963), 132–151. MR**142586**, DOI 10.4153/CJM-1963-016-1 - J. C. Robson,
*Idealizers and hereditary Noetherian prime rings*, J. Algebra**22**(1972), 45–81. MR**299639**, DOI 10.1016/0021-8693(72)90104-4 - Mark L. Teply,
*Homological dimension and splitting torsion theories*, Pacific J. Math.**34**(1970), 193–205. MR**274528** - D. B. Webber,
*Ideals and modules of simple Noetherian hereditary rings*, J. Algebra**16**(1970), 239–242. MR**265395**, DOI 10.1016/0021-8693(70)90029-3

## Bibliographic Information

- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**35**(1972), 317-324 - MSC: Primary 16A60
- DOI: https://doi.org/10.1090/S0002-9939-1972-0306264-X
- MathSciNet review: 0306264