A splitting ring of global dimension two
HTML articles powered by AMS MathViewer
- by John D. Fuelberth and Mark L. Teply
- Proc. Amer. Math. Soc. 35 (1972), 317-324
- DOI: https://doi.org/10.1090/S0002-9939-1972-0306264-X
- PDF | Request permission
Abstract:
In this paper an example is given of a ring with left global dimension 2 having the property that the singular submodule of any R-module A is a direct summand of A. Although the example given is quite specific, the methods can be used to construct a fairly large class of these rings.References
- J. S. Alin and S. E. Dickson, Goldie’s torsion theory and its derived functor, Pacific J. Math. 24 (1968), 195–203. MR 227249
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- Vasily C. Cateforis and Francis L. Sandomierski, The singular submodule splits off, J. Algebra 10 (1968), 149–165. MR 241465, DOI 10.1016/0021-8693(68)90091-4
- John H. Cozzens, Homological properties of the ring of differential polynomials, Bull. Amer. Math. Soc. 76 (1970), 75–79. MR 258886, DOI 10.1090/S0002-9904-1970-12370-9
- Lawrence Levy, Torsion-free and divisible modules over non-integral-domains, Canadian J. Math. 15 (1963), 132–151. MR 142586, DOI 10.4153/CJM-1963-016-1
- J. C. Robson, Idealizers and hereditary Noetherian prime rings, J. Algebra 22 (1972), 45–81. MR 299639, DOI 10.1016/0021-8693(72)90104-4
- Mark L. Teply, Homological dimension and splitting torsion theories, Pacific J. Math. 34 (1970), 193–205. MR 274528
- D. B. Webber, Ideals and modules of simple Noetherian hereditary rings, J. Algebra 16 (1970), 239–242. MR 265395, DOI 10.1016/0021-8693(70)90029-3
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 35 (1972), 317-324
- MSC: Primary 16A60
- DOI: https://doi.org/10.1090/S0002-9939-1972-0306264-X
- MathSciNet review: 0306264