Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2024 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On the characterization of Abelian $W^{^{\ast } }$-algebras
HTML articles powered by AMS MathViewer

by J. W. Jenkins
Proc. Amer. Math. Soc. 35 (1972), 436-438
DOI: https://doi.org/10.1090/S0002-9939-1972-0306934-3

Abstract:

In this note we present an elementary proof that an Abelian ${W^ \ast }$-algebra is generated by the range of some real spectral measure.
References
  • Jacques Dixmier, Les algèbres d’opĂ©rateurs dans l’espace hilbertien (Algèbres de von Neumann), Cahiers Scientifiques, Fasc. XXV, Gauthier-Villars, Paris, 1957 (French). MR 0094722
  • M. A. NaÄ­mark, Normed rings, GITTL, Moscow, 1956; English transl., Noordhoff, Groningen, 1959. MR 19, 870; MR 22 #1824.
  • J. T. Schwartz, $W^{\ast }$-algebras, Gordon and Breach Science Publishers, New York-London-Paris, 1967. MR 0232221
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L10
  • Retrieve articles in all journals with MSC: 46L10
Bibliographic Information
  • © Copyright 1972 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 35 (1972), 436-438
  • MSC: Primary 46L10
  • DOI: https://doi.org/10.1090/S0002-9939-1972-0306934-3
  • MathSciNet review: 0306934