The local rings of global dimension two
HTML articles powered by AMS MathViewer
- by Wolmer V. Vasconcelos
- Proc. Amer. Math. Soc. 35 (1972), 381-386
- DOI: https://doi.org/10.1090/S0002-9939-1972-0308115-6
- PDF | Request permission
Abstract:
A commutative local ring A of global dimension two conforms to the following description: (a) If the maximal ideal M is either principal or not finitely generated then A is a valuation domain. (b) Otherwise M is generated by a regular sequence of two elements but the ring is not necessarily noetherian. It will be noetherian if and only if it is completely integrally closed.References
- Maurice Auslander, On the dimension of modules and algebras. III. Global dimension, Nagoya Math. J. 9 (1955), 67–77. MR 74406
- Hyman Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466–488. MR 157984, DOI 10.1090/S0002-9947-1960-0157984-8
- Lindsay Burch, On ideals of finite homological dimension in local rings, Proc. Cambridge Philos. Soc. 64 (1968), 941–948. MR 229634, DOI 10.1017/s0305004100043620
- Stephen U. Chase, Direct products of modules, Trans. Amer. Math. Soc. 97 (1960), 457–473. MR 120260, DOI 10.1090/S0002-9947-1960-0120260-3
- Irving Kaplansky, Commutative rings, Allyn and Bacon, Inc., Boston, Mass., 1970. MR 0254021
- Irving Kaplansky, Projective modules, Ann. of Math. (2) 68 (1958), 372–377. MR 0100017, DOI 10.2307/1970252
- Irving Kaplansky, The homological dimension of a quotient field, Nagoya Math. J. 27 (1966), 139–142. MR 194454
- Irving Kaplansky, Fields and rings, University of Chicago Press, Chicago, Ill.-London, 1969. MR 0269449
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 35 (1972), 381-386
- MSC: Primary 13H99
- DOI: https://doi.org/10.1090/S0002-9939-1972-0308115-6
- MathSciNet review: 0308115