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THE  LOCAL  RINGS  OF  GLOBAL  DIMENSION  TWO1

WOLMER  V.   VASCONCELOS

Abstract. A commutative local ring A of global dimension

two conforms to the following description: (a) If the maximal

ideal M is either principal or not finitely generated then A is a

valuation domain, (b) Otherwise M is generated by a regular

sequence of two elements but the ring is not necessarily noetherian.

It will be noetherian if and only if it is completely integrally closed.

Introduction. This note gives a description of the commutative rings

of the title. Unfortunately it is not as simple as would be desirable—that

such rings be either valuation domains or noetherian rings. Nevertheless,

the exceptional cases look rather as if a noetherian ring was "appended"

to a valuation domain.

The problem treated here and most of the elements of the proof con-

stitute, somehow, a delayed consequence of a lecture by Irving Kaplansky,

several years ago, on rings of finite global dimension.

Preliminaries and statement of main result. Throughout A will denote

a commutative ring with identity. When A admits a unique maximal ideal

it will be called local (rather than quasi-local).

For an /1-module E, the projective dimension of E (proj dim E, for

short) is finite and equal to «, we recall, if there is an exact sequence

o-/>„>• ••-^o-*£-o

with P¡ ^-projective and n least. Otherwise the projective dimension of £

is said to be infinite.

The global dimension of A is then the supremum of the projective dimen-

sions of all ,4-modules. The rings of global dimension zero are easily

described—they are finite products of fields—while those of global

dimension one are not so simply written—the topology of the subset of its

minimal primes plays here a crucial role. However, if in addition A is

local, then it is simply a discrete valuation domain.
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Theorem. Let A be a commutative local ring of maximal ideal M and

global dimension two. Then:

(a) If M is principal or not finitely generated, then A is a valuation

domain.

(b) Otherwise M is generated by two elements but A is not necessarily

noetherian. A will be noetherian if and only if it is completely integrally

closed. If A is not noetherian, its Krull dimension is at least three; the prime

ideals which are not finitely generated are flat, countably generated, linearly

ordered and contained in any finitely generated prime ideal.

Proof. It will consist of a list of more or less simple observations on A.

First of all, note that the hypothesis is equivalent to "A is not a discrete

valuation domain and the ideals of A have projective dimension at most

one" according to [1].

(1) A is a domain. In fact, if fe A and 7=annihilator of f, the exact

sequence

0-+I-+A-+Af-^0

says that 7 is ^-projective and thus, by [6], free; but this is only possible

if7=(0).
(2) A is a coherent ring. We recall that this means [4, p. 460] that

finitely generated ideals are finitely presented. If 7 is a finitely generated

ideal, there exists a sequence

O^K^A" ^7-^0

with K projective and thus free of rank necessarily not greater than n.

(3) A is a GCD-domain, in particular A is integrally closed. If a, b are

elements in A, there is a sequence

0^K-+A2^(a,b)-+0

obtained by mapping (1, 0) onto a and (0, 1) onto b. K will be a free

module of rank one (if a or b is distinct from 0), generated by, say, (a, ß).

As (b, —a) e K, we can write (b, — a) = ¿(<x, ß). It is easily checked that ¿

is the greatest common divisor of a and b.

We denote the GCD of a, b by [a, b] and use [5, p. 32] for reference.

Note that if [a, b]=ô, a=¿a, b=oß, then {a, ß} form a regular sequence,

i.e. r«.=sß implies r e (ß), s e (a).

(4) If M is generated by one element A is a valuation domain. Assume

M=(d); if a, b are elements of M, [a, b]=ô, then with a=¿oc, b=oß, we

must show that a or ß must be a unit. If it were not so a and ß would both

be divisible by d, and this is not possible by the choice of ¿ and (3).

Before we go on it will be necessary to recall the notion of finitistic pro-

jective dimension (FPD for brevity) of a ring A. It is obtained simply by
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taking, in the definition of the global dimension of A, those modules with

finite projective dimension. We shall make use of the fact a perfect ring A

is one for which FPD(^)=0 [2].

(5) If M is not finitely generated A is a valuation domain. We use the

notation of (4). To prove the assertion it is enough to show that 7=(a, ß)

is the unit ideal. If this is not the case {a, ß} form a regular sequence con-

tained in M. The ring A\I is coherent because A is coherent from (2) and /

is a finitely generated ideal. Also, by the change of rings theorem of [8,

p. 172] applied twice, we have that the finitistic projective dimension of

A\l is zero. According to [4, p. 467] however, A\I being commutative and

both coherent and perfect is artinian. In particular its maximal ideal M\I

is finitely generated and thus M will also be finitely generated.

This completes the proof of part (a) of the Theorem. Assume from now

on that M is finitely generated but not principal.

(6) M is generated by two elements. If M is minimally generated by

Xy, ■ ■ • , xn, since proj dim M=\, there is an exact sequence

0—y A"-1^ An-^> M—>■ 0.

The statement now follows from [3, p. 946] since M will be generated bv

the (n— l)-minors of the matrix/

(7) Example of a local ring of global dimension two which is neither a

valuation domain nor a noetherian ring. For a domain A of field of quotients

K, let A[[t)) be the subring of K[[t]] (=power series ring with coefficients

in A) consisting of the series with constant term in A. If A is local, A [[*)) is

also local and in this case one checks easily that every ideal of ^4[[r)) is of

the form tnJ ■ A[[t)) where J is an A -submodule of A. Now take A to be a

noetherian local ring of global dimension two in which K has projective

dimension one. (According to [7] this is equivalent to A being countably

generated.) A simple example is the ring Z[x] of polynomials over the

integers localized at the prime (2, x). Then any submodule J of A" has also

projective dimension at most one. (Proof. 0—»■/—>A—>-A/.7-^0 implies the

exactness of Ext^(A, E)^>-ExtA(J, ZT)-^-0 for any ^-module E.) Thus we

get for any such J a resolution

0-A1^A0-/^0

where F0, Fx are A-ïree. Since A[[t)) is ,4-flat, one has

0 -> A[[t)) ®A Fx -> A[[t)) ®A F0~>J- A[[t)) -> 0

also exact and A[[t)) has global dimension at most two. It is obviously

neither a valuation domain nor a noetherian ring.

Another way to construct the example, this time retaining the cardinality

conditions, is ta take the similarly defined A[t) and localize it at (M, t).
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This way we can apply the procedure again and obtain any number (even

infinity) for the Krull dimension.

(8) Every prime idealP of A, P^M, is a directed union of principal ideals

(and thus flat); P is also countably generated. Indeed, if a, beP, let ¿=

[a, b]; it is enough to show that ¿ e7>. If this were not so, with a=ôct,

b=oß we would have a, ß e P and P would contain the regular sequence

{a, ß). But for the same reasons as in (5), A/(a, ß) would then be artinian

and then M=P.

To complete the proof of the assertion we remark that proj dim P^ 1

and the manner of generation of P leads, as in [7], to a countable genera-

tion for P.

(9) Every nonfinitely generated prime ideal is contained in every finitely

generated prime ideal. We have seen so far enough to conclude that the

finitely generated prime ideals are either principal or M itself. Let P be a

prime ideal not finitely generated and (d) a principal prime such that

P<£ (d). Then we show that P is finitely generated.

A\(d) is a coherent domain of finitistic dimension one by (2) and

[8, p. 172] and thus is noetherian. Consequently (P, d) is a finitely gener-

ated ideal. From (8) we can assume (P, d)=(p, d) with/» e P. Let q be an

element of P such that/? e (q) but q $ (/?), i.e. p=rq, reM. We can, on the

other hand, write q=tp+vd and hence q=trq+vd or (1— tr)q=vd

and q e (d). But then Pc (d).

(10) The nonfinitely generated prime ideals are linearly ordered. Let P,

Q be noncomparable, nonfinitely generated prime ideals. Let/? eP\Q and

q e Q\P. Then ¿= [/?, q] is in neither P nor Q, and hence P+Q contains

a, ß where /?=¿a, q=oß. However, if de M\M2, (d) is a prime ideal as

dis indecomposable and A is a GCD [5, p. 32]. Thus by (9), P+Q<=(d),

which is not possible as [a, /?]=1.

To complete the proof of part (b) we have

(11) If A is completely integrally closed it is noetherian. (The converse is

trivial since, by (2), A is integrally closed.) If P is a prime ideal properly

contained in (d), with d indecomposable, then clearly 7>c f] (dn). Thus,

if O^p e P and u=d~1, pu" e A for all integers n. If A is completely in-

tegrally closed then ue A, a contradiction.

Remark. The shape of the prime spectrum of a local ring of global

dimension two which is neither a valuation domain nor a noetherian ring

"resembles" an umbrella. One is then tempted to call them umbrella rings.

Appendix. We shall use this section for two comments on the divisi-

bility of flat prime ideals.

The first refers to a situation which becomes clear during the preced-

ing proof: If A is a local ring of global dimension two, then for any
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nonmaximal prime ideal P, AP, the localization of A at P, is a valuation

domain.

Proposition A. Let A be a commutative domain. Then A is a valuation

domain if and only if it is a GCD and the prime ideals are linearly ordered.

Proof. A valuation domain satisfies trivially the GCD condition. A

ring with the above properties is local; let a, b be elements in its maximal

ideal Mand let d= [a, b]. Then with a=ôa., b=oß, {a, /?} is either a regular

sequence in M or one of them is a unit. To show the second hypothesis to

be the case," let P (resp. Q) be a prime ideal minimal over (a) (resp. (/?)).

Say Peg; then there is s $ Q and an integer n such that sa.n=rß. Since

{an, ß] also form a regular sequence, s e (ß), a contradiction.

The next remark is essentially [5, p. 7, Example 5] with the finiteness

hypothesis deleted.

Proposition B. (a) Let I be a flat ideal of a commutative ring A and

Jet P be a prime ideal properly contained in I. Then P=I • P.

(b) If I is besides a prime ideal, then J= f) /" is also a prime ideal.

Proof, (a) / ®AA\P=1\P-1 is a flat A\P-mod\x\e and thus torsion

free over A\P. Tensor by A\P the sequence

0->I-±A^A¡I-+0

to get

0 -> loxt(A\P, All) — I¡P • /-> A\P — All -* 0.

But the submodule Tort(A¡P, A/I) of//A-/is annihilated by //A and thus
is trivial, i.e. P(M=P-I or P=P-I.

(b) First note that if xyel" but x $ /then y e I"; if ye F\Ir+1, r<n,

Ir is a flat /t-module and thus /r//r+1 is Ajl-Wat and hence without torsion

over All, a contradiction.

Assume xy e J={] In and xe/"\/n+1, yelm\lm+1. By the preceding

the image x' oix in A/I"+1 is different from 0 with annihilator contained in

///n+1. Now

Im ®A A/In+1 = /"'//"»+"+1

is a flat ^//n+1-module, the image y' of y in it is different from zero but

x'./ = 0. Thus y' e (annihilator of jc')-(/n//m+n+1) by the flatness of

/"//m+n+1 and hence y e Im+1.
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