Generalizations of results of Agmon and Nirenberg to the Cauchy problem for evolution equations
HTML articles powered by AMS MathViewer
- by Monty J. Strauss
- Proc. Amer. Math. Soc. 35 (1972), 431-435
- DOI: https://doi.org/10.1090/S0002-9939-1972-0310479-4
- PDF | Request permission
Abstract:
Uniqueness and norm convexity for evolution equations are investigated by using tools developed by Agmon and Nirenberg.References
- Shmuel Agmon, Unicité et convexité dans les problèmes différentiels, Séminaire de Mathématiques Supérieures, No. 13 (Été, vol. 1965, Les Presses de l’Université de Montréal, Montreal, Que., 1966 (French). MR 0252808
- S. Agmon and L. Nirenberg, Properties of solutions of ordinary differential equations in Banach space, Comm. Pure Appl. Math. 16 (1963), 121–239. MR 155203, DOI 10.1002/cpa.3160160204
- S. Agmon and L. Nirenberg, Lower bounds and uniqueness theorems for solutions of differential equations in a Hilbert space, Comm. Pure Appl. Math. 20 (1967), 207–229. MR 204829, DOI 10.1002/cpa.3160200106
- P. D. Lax and L. Nirenberg, On stability for difference schemes: A sharp form of Gȧrding’s inequality, Comm. Pure Appl. Math. 19 (1966), 473–492. MR 206534, DOI 10.1002/cpa.3160190409
- L. Nirenberg, Pseudo-differential operators, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 149–167. MR 0270217 M. Strauss, Uniqueness and norm convexity for the Cauchy problem, Thesis, New York University, 1971.
- Monty J. Strauss, Uniqueness and norm convexity in the Cauchy problem for evolution equations with convolution operators, Proc. Amer. Math. Soc. 35 (1972), 423–430. MR 310478, DOI 10.1090/S0002-9939-1972-0310478-2
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 35 (1972), 431-435
- MSC: Primary 35S10
- DOI: https://doi.org/10.1090/S0002-9939-1972-0310479-4
- MathSciNet review: 0310479