Generalized overrelaxation and Gauss-Seidel convergence on Hilbert space
HTML articles powered by AMS MathViewer
- by Michael P. Hanna
- Proc. Amer. Math. Soc. 35 (1972), 524-530
- DOI: https://doi.org/10.1090/S0002-9939-1972-0311100-1
- PDF | Request permission
Abstract:
We present a generalized result on Gauss-Seidel convergence for bounded linear operators on Hilbert space $\mathcal {H}$. From this result, we obtain overrelaxation theorems of Petryshyn [4], [5], de Pillis [1], Ostrowski [3] and Reich [6].References
- John de Pillis, Gauss-Seidel convergence for operators on Hilbert space, SIAM J. Numer. Anal. 10 (1973), 112–122. MR 395214, DOI 10.1137/0710012
- Fritz John, Lectures on advanced numerical analysis, Gordon and Breach Science Publishers, New York-London-Paris, 1967. MR 0221721
- A. M. Ostrowski, On the linear iteration procedures for symmetric matrices, Rend. Mat. e Appl. (5) 14 (1954), 140–163. MR 70261
- W. V. Petryshyn, On the generalized overrelaxation method for operation equations, Proc. Amer. Math. Soc. 14 (1963), 917–924. MR 169402, DOI 10.1090/S0002-9939-1963-0169402-2
- W. V. Petryshyn, Remarks on the generalized overrelaxation and the extrapolated Jacobi methods for operator equations in Hilbert space, J. Math. Anal. Appl. 29 (1970), 558–568. MR 262853, DOI 10.1016/0022-247X(70)90067-3
- Edgar Reich, On the convergence of the classical iterative method of solving linear simultaneous equations, Ann. Math. Statistics 20 (1949), 448–451. MR 31327, DOI 10.1214/aoms/1177729998
- Helmut H. Schaefer, Topological vector spaces, The Macmillan Company, New York; Collier Macmillan Ltd., London, 1966. MR 0193469 P. Stein, The convergence of Seidel iterants of nearly symmetric matrices, Math. Tables and Aids to Computation 5 (1951), 237-240.
- Richard S. Varga, Matrix iterative analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR 0158502
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 35 (1972), 524-530
- MSC: Primary 65J05
- DOI: https://doi.org/10.1090/S0002-9939-1972-0311100-1
- MathSciNet review: 0311100