Henselian fields and solid $k$-varieties. II
HTML articles powered by AMS MathViewer
- by Gustave Efroymson
- Proc. Amer. Math. Soc. 35 (1972), 362-366
- DOI: https://doi.org/10.1090/S0002-9939-1972-0318160-2
- PDF | Request permission
Abstract:
Let k be a real closed or Henselian field. A k-variety X (affine) is said to be solid if X is determined by its k points. It is shown that a k-variety is solid if and only if it contains a nonsingular k point. Another condition for solidity is given and a dimension theorem indicated.References
- Tom M. Apostol, Mathematical analysis: a modern approach to advanced calculus, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1957. MR 0087718
- M. Artin, Algebraic approximation of structures over complete local rings, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 23–58. MR 268188, DOI 10.1007/BF02684596 D. Dubois and G. Efroymson, A dimension theorem for real primes (submitted).
- Gustave Efroymson, Solid $k$-varieties and Henselian fields, Trans. Amer. Math. Soc. 170 (1972), 187–195. MR 318159, DOI 10.1090/S0002-9947-1972-0318159-0
- Nathan Jacobson, Lectures in abstract algebra. Vol III: Theory of fields and Galois theory, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London-New York, 1964. MR 0172871, DOI 10.1007/978-1-4612-9872-4
- Oscar Zariski and Pierre Samuel, Commutative algebra, Volume I, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, New Jersey, 1958. With the cooperation of I. S. Cohen. MR 0090581
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 35 (1972), 362-366
- MSC: Primary 14G20; Secondary 13J15
- DOI: https://doi.org/10.1090/S0002-9939-1972-0318160-2
- MathSciNet review: 0318160