Nodal algebras defined by skew-symmetric bilinear forms
HTML articles powered by AMS MathViewer
- by Jerry Goldman
- Proc. Amer. Math. Soc. 35 (1972), 333-341
- DOI: https://doi.org/10.1090/S0002-9939-1972-0349776-5
- PDF | Request permission
Abstract:
This paper studies nodal algebras defined by skew-symmetric bilinear forms, a subclass of the class of Kokoris algebras. The ideals of such algebras are classified and a characterization of the automorphisms of these algebras is given.References
- A. A. Albert, On commutative power-associative algebras of degree two, Trans. Amer. Math. Soc. 74 (1953), 323–343. MR 52409, DOI 10.1090/S0002-9947-1953-0052409-1
- Marguerite Straus Frank, A new class of simple Lie algebras, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 713–719. MR 66360, DOI 10.1073/pnas.40.8.713
- Jerry I. Goldman, On a class of nodal noncommutative Jordan algebras, Trans. Amer. Math. Soc. 128 (1967), 176–183. MR 224665, DOI 10.1090/S0002-9947-1967-0224665-8
- Jerry I. Goldman, Nodal algebras of dimension $p^{3}$, Proc. Amer. Math. Soc. 24 (1970), 156–160. MR 272842, DOI 10.1090/S0002-9939-1970-0272842-8
- Nathan Jacobson, Lectures in abstract algebra. Vol. II. Linear algebra, D. Van Nostrand Co., Inc., Toronto-New York-London, 1953. MR 0053905
- N. Jacobson, Classes of restricted Lie algebras of characteristic $p$. II, Duke Math. J. 10 (1943), 107–121. MR 7749
- Louis A. Kokoris, Nodal non-commutative Jordan algebras, Canadian J. Math. 12 (1960), 488–492. MR 116039, DOI 10.4153/CJM-1960-043-2
- Robert H. Oehmke, Nodal noncommutative Jordan algebras, Trans. Amer. Math. Soc. 112 (1964), 416–431. MR 179220, DOI 10.1090/S0002-9947-1964-0179220-2 R. D. Schafer, On noncommutative Jordan algebras, Proc. Amer. Math. Soc. 9 (1958), 110-117. MR 21 #2677.
- R. D. Schafer, Nodal noncommutative Jordan algebras and simple Lie algebras of characteristic $p$, Trans. Amer. Math. Soc. 94 (1960), 310–326. MR 117262, DOI 10.1090/S0002-9947-1960-0117262-X
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 35 (1972), 333-341
- MSC: Primary 17A25
- DOI: https://doi.org/10.1090/S0002-9939-1972-0349776-5
- MathSciNet review: 0349776