Join-principal elements in Noether lattices
HTML articles powered by AMS MathViewer
- by E. W. Johnson and J. P. Lediaev
- Proc. Amer. Math. Soc. 36 (1972), 73-78
- DOI: https://doi.org/10.1090/S0002-9939-1972-0306174-8
- PDF | Request permission
Abstract:
In this paper we determine the structure of join-principal elements in Noether lattices and we apply these results to obtain the Krull Principal Ideal Theorem for join-principal elements, a representation theorem for a class of Noether lattices, and some interesting ring results.References
- R. P. Dilworth, Abstract commutative ideal theory, Pacific J. Math. 12 (1962), 481–498. MR 143781
- E. W. Johnson, $A$-transforms and Hilbert functions in local lattices, Trans. Amer. Math. Soc. 137 (1969), 125–139. MR 237387, DOI 10.1090/S0002-9947-1969-0237387-6
- E. W. Johnson and J. P. Lediaev, Representable distributive Noether lattices, Pacific J. Math. 28 (1969), 561–564. MR 255456
- E. W. Johnson and J. P. Lediaev, Join-principle elements and the principal-ideal theorem, Michigan Math. J. 17 (1970), 255–256. MR 263710
- E. W. Johnson and J. P. Lediaev, Structure of Noether lattices with join-principal maximal elements, Pacific J. Math. 37 (1971), 101–108. MR 307993
- Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0120249
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 36 (1972), 73-78
- MSC: Primary 13C05
- DOI: https://doi.org/10.1090/S0002-9939-1972-0306174-8
- MathSciNet review: 0306174