A generalization of Peano’s existence theorem and flow invariance
HTML articles powered by AMS MathViewer
- by Michael G. Crandall
- Proc. Amer. Math. Soc. 36 (1972), 151-155
- DOI: https://doi.org/10.1090/S0002-9939-1972-0306586-2
- PDF | Request permission
Abstract:
Let $F \subseteq {R^n}$ be closed and $A:F \to {R^n}$ be continuous. Assuming that for $y \in F$ the distance from $y + hAy$ to F is $o(h)$ as $h \downarrow 0$, it is shown that for each $x \in F$ the Cauchy problem $u’ = Au$, $u(0) = x$, has a solution $u:[0,{T_x}] \to F$ on some interval $[0,{T_x}],{T_x} > 0$.References
- Jean-Michel Bony, Principe du maximum, inégalite de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble) 19 (1969), no. fasc. 1, 277–304 xii (French, with English summary). MR 262881
- Haïm Brezis, On a characterization of flow-invariant sets, Comm. Pure Appl. Math. 23 (1970), 261–263. MR 257511, DOI 10.1002/cpa.3160230211
- Philip Hartman, On invariant sets and on a theorem of Ważewski, Proc. Amer. Math. Soc. 32 (1972), 511–520. MR 298091, DOI 10.1090/S0002-9939-1972-0298091-7
- V. Lakshmikantham, A. Richard Mitchell, and Roger W. Mitchell, Differential equations on closed subsets of a Banach space, Trans. Amer. Math. Soc. 220 (1976), 103–113. MR 402224, DOI 10.1090/S0002-9947-1976-0402224-7
- R. M. Redheffer, The theorems of Bony and Brezis on flow-invariant sets, Amer. Math. Monthly 79 (1972), 740–747. MR 303024, DOI 10.2307/2316263
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 36 (1972), 151-155
- MSC: Primary 34A15
- DOI: https://doi.org/10.1090/S0002-9939-1972-0306586-2
- MathSciNet review: 0306586