Infinite matrices and invariant means
HTML articles powered by AMS MathViewer
- by Paul Schaefer
- Proc. Amer. Math. Soc. 36 (1972), 104-110
- DOI: https://doi.org/10.1090/S0002-9939-1972-0306763-0
- PDF | Request permission
Abstract:
Let $\sigma$ be a one-to-one mapping of the set of positive integers into itself such that ${\sigma ^p}(n) \ne n$ for all positive integers n and p, where ${\sigma ^p}(n) = \sigma ({\sigma ^{p - 1}}(n)),p = 1,2, \cdots$. A continuous linear functional $\varphi$ on the space of real bounded sequences is an invariant mean if $\varphi (x) \geqq 0$ when the sequence $x = \{ {x_n}\}$ has ${x_n} \geqq 0$ for all n, $\varphi (\{ 1,1,1, \cdots \} ) = + 1$, and $\varphi (\{ {x_{\sigma (n)}}\} ) = \varphi (x)$ for all bounded sequences x. Let ${V_\sigma }$ be the set of bounded sequences all of whose invariant means are equal. If $A = ({a_{nk}})$ is a real infinite matrix, then A is said to be (1) $\sigma$-conservative if $Ax = \{ {\Sigma _k}{a_{nk}}{x_k}\} \in {V_\sigma }$ for all convergent sequences x, (2) $\sigma$-regular if $Ax \in {V_\sigma }$ and $\varphi (Ax) = \lim x$ for all convergent sequences x and all invariant means $\varphi$, and (3) $\sigma$-coercive if $Ax \in {V_\sigma }$ for all bounded sequences x. Necessary and sufficient conditions are obtained to characterize these classes of matrices.References
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- C. Eizen and G. Laush, Infinite matrices and almost convergence, Math. Japon. 14 (1969), 137–143. MR 265814
- G. H. Hardy, Divergent Series, Oxford, at the Clarendon Press, 1949. MR 0030620
- J. P. King, Almost summable sequences, Proc. Amer. Math. Soc. 17 (1966), 1219–1225. MR 201872, DOI 10.1090/S0002-9939-1966-0201872-6
- G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167–190. MR 27868, DOI 10.1007/BF02393648
- Ralph A. Raimi, Invariant means and invariant matrix methods of summability, Duke Math. J. 30 (1963), 81–94. MR 154005
- Paul Schaefer, Matrix transformations of almost convergent sequences, Math. Z. 112 (1969), 321–325. MR 254466, DOI 10.1007/BF01110226
- Albert Wilansky, Functional analysis, Blaisdell Publishing Co. [Ginn and Co.], New York-Toronto-London, 1964. MR 0170186
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 36 (1972), 104-110
- MSC: Primary 40C05
- DOI: https://doi.org/10.1090/S0002-9939-1972-0306763-0
- MathSciNet review: 0306763