SOME OPERATOR MONOTONE FUNCTIONS

GERT K. PEDERSEN

ABSTRACT. A short proof is given based on C*-algebra theory for the well-known theorem that if S and T are bounded selfadjoint operators on a Hilbert space such that $0 \leq S \leq T$ then $S^\alpha \leq T^\alpha$ for each $0 \leq \alpha \leq 1$.

THEOREM. If S and T are bounded selfadjoint operators on a Hilbert space H such that $0 \leq S \leq T$ then $S^\alpha \leq T^\alpha$ for each α in the interval $[0, 1]$.

REMARK. The theorem says that each function $t \rightarrow t^\alpha$, with $0 \leq \alpha \leq 1$, is operator monotone on the set of positive operators in $B(H)$. This was first proved by K. Löwner, who gave a complete description of operator monotone functions. Later T. Ogasawara gave a short proof of the operator monotonicity for the square root function. We present here a simple proof based on C*-algebra theory.

Proof. If $0 \leq S \leq T$ then $S + \varepsilon I \leq T + \varepsilon I$ for each $\varepsilon > 0$; and $S + \varepsilon I$ and $T + \varepsilon I$ are both invertible. Since $(S + \varepsilon I)^\alpha$ converges to S^α in norm when $\varepsilon \rightarrow 0$ for each $\alpha > 0$, and since the positive operators in $B(H)$ form a norm closed set, it suffices to prove the theorem assuming that S and T are invertible. (The case $\alpha = 0$ can be verified directly, since S^0 is the range projection of S.)

Let E denote the set of exponents α in $[0, 1]$ for which the function $t \rightarrow t^\alpha$ is operator monotone. Trivially $0 \in E$ and $1 \in E$. Since the function $\alpha \rightarrow S^\alpha$ is continuous from $[0, 1]$ to $B(H)$ in the norm topology we see that E is a closed set. The proof will be complete when we show that E is convex.

Take α and β in E. Then $S^\alpha \leq T^\alpha$; hence $T^{-\alpha/2}S^\alpha T^{-\alpha/2} \leq I$. It follows that $\|S^{\alpha/2}T^{-\alpha/2}\| \leq 1$. Similarly $\|S^{\beta/2}T^{-\beta/2}\| \leq 1$. With $\rho(A)$ the spectral radius of an operator A we have $\rho(AB) = \rho(BA)$. Therefore

\[
\rho(T^{-(\alpha+\beta)/4}S^{(\alpha+\beta)/2}T^{-(\alpha+\beta)/4}) = \rho(T^{-(\alpha-\beta)/4}T^{-(\alpha+\beta)/4}S^{(\alpha+\beta)/2}T^{-(\alpha-\beta)/4}T^{-(\alpha+\beta)/4}) = \rho(T^{-\alpha/2}S^{(\alpha+\beta)/2}T^{-\alpha/2}) \leq \|T^{-\beta/2}S^{(\alpha+\beta)/2}T^{-\alpha/2}\| \leq 1.
\]

Received by the editors April 27, 1972.

AMS 1970 subject classifications. Primary 47B15; Secondary 46L05.

Key words and phrases. Operator monotone functions, C*-algebras, positive operators.

\footnote{The preparation of this paper was supported in part by NSF Grant 28976X.}

© American Mathematical Society 1972

309
It follows that $T^{-(a+b)/4} S^{(a+b)/2} T^{-(a+b)/4} \leq I$, so that $S^{(a+b)/2} \leq T^{(a+b)/2}$. This shows that $(a+b)/2 \in E$ which completes the proof.

REFERENCES

Department of Mathematics, University of Copenhagen, Copenhagen, Denmark

Current address: Matematisk Institut, Universitetsparken 5, 2100 Copenhagen, Denmark