Fixed point theorems for Lipschitzian pseudo-contractive mappings
HTML articles powered by AMS MathViewer
- by Juan A. Gatica and W. A. Kirk
- Proc. Amer. Math. Soc. 36 (1972), 111-115
- DOI: https://doi.org/10.1090/S0002-9939-1972-0306993-8
- PDF | Request permission
Abstract:
Let X be a Banach space and $D \subset X$. A mapping $U:D \to X$ is said to be pseudo-contractive if, for all $u,v \in D$ and all $r > 0,\left \| {u - v} \right \| \leqq \left \| {(1 + r)(u - v) - r(U(u) - U(v))} \right \|$. A recent fixed point theorem of W. V. Petryshyn is used to prove: If G is an open bounded subset of X with $0 \in G$ and $U:\bar G \to X$ is a lipschitzian pseudo-contractive mapping satisfying (i) $U(x) \ne \lambda x$ for $x \in \partial G,\lambda > 1$ , and (ii) $(I - U)(\bar G)$ is closed, then U has a fixed point in $\bar G$. This result yields fixed point theorems for pseudo-contractive mappings in uniformly convex spaces and for “strongly” pseudo-contractive mappings in reflexive spaces.References
- Felix E. Browder, Nonlinear mappings of nonexpansive and accretive type in Banach spaces, Bull. Amer. Math. Soc. 73 (1967), 875–882. MR 232255, DOI 10.1090/S0002-9904-1967-11823-8
- Felix E. Browder, Semicontractive and semiaccretive nonlinear mappings in Banach spaces, Bull. Amer. Math. Soc. 74 (1968), 660–665. MR 230179, DOI 10.1090/S0002-9904-1968-11983-4
- W. A. Kirk, Remarks on pseudo-contractive mappings, Proc. Amer. Math. Soc. 25 (1970), 820–823. MR 264481, DOI 10.1090/S0002-9939-1970-0264481-X
- W. A. Kirk, On nonlinear mappings of strongly semicontractive type, J. Math. Anal. Appl. 27 (1969), 409–412. MR 244814, DOI 10.1016/0022-247X(69)90057-2 C. Kuratowski, Topologie. Vol. 1. Espaces métrisables, espaces complets, 2nd ed., Monografie Mat., vol. 20, PWN, Warsaw, 1948. MR 10, 389.
- W. V. Petryshyn, Structure of the fixed points sets of $k$-set-contractions, Arch. Rational Mech. Anal. 40 (1970/71), 312–328. MR 273480, DOI 10.1007/BF00252680
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 36 (1972), 111-115
- MSC: Primary 47H10
- DOI: https://doi.org/10.1090/S0002-9939-1972-0306993-8
- MathSciNet review: 0306993