CLASS NUMBER IN CONSTANT EXTENSIONS OF FUNCTION FIELDS

JAMES R. C. LEITZEL

Abstract. Let F/K be a function field in one variable of genus g having the finite field K as exact field of constants. Suppose p is a rational prime not dividing the class number of F. In this paper an upper bound is derived for the degree of a constant extension E necessary to have p occur as a divisor of the class number of the field E.

Throughout this paper the term “function field” will mean a function field in one variable whose exact field of constants is a finite field with q elements.

Let F/K be a function field. The order of the finite group of divisor classes of degree zero is the class number h_F. For F/K of genus g, we use the notation of [2] and denote by $L(u)$ the polynomial numerator of the zeta function of F. It follows from the functional equation of the zeta function that

$$L(u) = 1 + a_1 u + a_2 u^2 + \cdots$$
$$+ a_g u^g + q a_{g-1} u^{g+1} + \cdots + q^{g-1} a_1 u^{2g} + q^g u^{2g}$$

and $L(u) \in \mathbb{Z}[u]$, \mathbb{Z} the rational integers. Furthermore the class number $h_F = L(1)$. If E/F is a constant field extension of degree n, then the polynomial numerator $L_n(u)$ of the zeta function for E is given by

$$L_n(u) = 1 + b_1 u + \cdots + b_g u^g + q^n b_{g-1} u^{g+1} + \cdots + q^{ng} u^{2g}$$

where the coefficients b_j ($j=1, \cdots, g$) are, with appropriate sign, the elementary symmetric functions of the nth powers of the reciprocals of the roots of (1). The genus of E is the same as that of F because F is conservative.

In this paper we give an upper bound for the degree of a constant extension E of F necessary to have a predetermined prime p occur as a
THEOREM 1. Let F be a function field of genus g and p a rational prime. If $p \nmid h_E$ then $p \mid h_E$ for E a constant extension of F of degree m where

(a) $m = p^{r(g)} - 1$ if $p \neq \text{char } K$ and $f = \text{ord } q (p)$.

(b) $m = p^{r(g)} - 1$ if $p = \text{char } K$ and $L(u) \neq 1$ in $\mathbb{Z}_p[u]$.

Here $r(g)$ denotes the least common multiple of the integers $1, 2, \cdots, g$.

1. We collect here some results from the theory of equations. For K a field, we say $f(x) \in K[x]$ is a reciprocal polynomial if and only if $f(x) = x \deg f(1/x)$ [1, Vol. 1, §32]. Observe that if $f(x) = a_0 + a_1x + \cdots + x^n$ and $f(x)$ is a reciprocal polynomial then $a_{n-i} = a_i$, $i = 1, \cdots, [n/2]$, since necessarily $a_0 = 1$.

LEMMA 1. Let K be a finite field, $f(x) \in K[x]$ a monic reciprocal polynomial of even degree $2m$. Let E be a splitting field for $f(x)$ over K, then $[E:K] \leq 2r(m)$, where $r(m)$ is the least common multiple of the integers $1, 2, \cdots, m$.

PROOF. Suppose

$$f(x) = x^{2m} + a_1 x^{2m-1} + \cdots + a_m x^m + \cdots + a_1 x + 1.$$

Dividing by x^m and combining terms we get

$$f(x)/x^m = (x^m + 1/x^m) + a_1(x^{m-1} + 1/x^{m-1})$$
\[+ \cdots + a_{m-1}(x + 1/x) + a_m.\]

Set $z = x + 1/x$ and for nonnegative integers s, $W_s = x^s + 1/x^s$. It is easy to verify that $W_{s+1} = z W_s - W_{s-1}$. Substituting into (3) we get a polynomial $g(z)$ of degree m. Since $z = x + 1/x$ the roots of $f(x)$ can be obtained from the roots of $g(z)$ by solving quadratic polynomials. Since finite fields have cyclic galois groups we have from elementary field theory that $g(z)$ splits in an extension of degree at most $r(m)$. For a finite field there is a unique quadratic extension, so a splitting field E for $f(x)$ has degree dividing $2r(m)$.

Now let K be arbitrary and $f(x) \in K[x]$ with degree $f = n$. Then if x_1, \cdots, x_n are the roots of $f(x)$ in a splitting field the sums of the kth powers of these roots are elements in K. In fact if we let $S_k = \sum_{i=1}^n x_i^k$, then the following relations hold [4, p. 81]:

$$S_k = S_{k-1} x_1 - S_{k-2} x_2 + \cdots + (-1)^{k+1} k x_k \quad \text{for } k \leq n,$$
\[S_k = S_{k-1} x_1 - S_{k-2} x_2 + \cdots + (-1)^{n+1} S_{k-n} x_n \quad \text{for } k > n\]

where $x_i (i = 1, \cdots, n)$ are the elementary symmetric functions of the roots.
Lemma 2. Let \(Z \) denote the rational integers, \(f(x) \in Z[x] \) a monic polynomial. Let \(p \) be a rational prime and \(f^*(x) \in Z_p[x] \) the image of \(f(x) \) under the canonical homomorphism of \(Z[x] \to Z_p[x] \). Let \(S_k (S^*_k) \) denote the sum of the \(k \)th powers of the roots of \(f(x) (f^*(x)) \). Then for all \(k \) we have \(S_k \equiv S^*_k \pmod{p} \).

Proof. Let \(\sigma_i (\sigma^*_i), i=1, \ldots, \deg f \), denote the elementary symmetric functions of the roots of \(f(x) (f^*(x)) \). Since the coefficients of \(f(x) (f^*(x)) \) are, with appropriate sign, these elementary symmetric functions we have \(\sigma_i \equiv \sigma^*_i \pmod{p} \) for all \(i \) by definition. The conclusion then follows from the relations given in (4).

Corollary 2.1. If \(f(x) \in Z[x] \) is a monic polynomial of degree \(2m \) and \(p \) a prime in \(Z \) such that \(f^*(x) \in Z_p[x] \) is a reciprocal polynomial we have

\[
S_{p^{2r(m)-1}} \equiv 2^m (p).
\]

Proof. By Lemma 1 if \([E:Z_p]=2r(m) \) then \(E \) contains a splitting field for \(f^*(x) \). In \(E \), every \(\beta \neq 0 \) satisfies \(\beta^{p^{2r(m)-1}}=1 \). Therefore by Lemma 2,

\[
S_{p^{2r(m)-1}} \equiv S^*_{p^{2r(m)-1}} \equiv 2^m (p).
\]

It is clear from (4) that the elementary symmetric functions of the roots of a polynomial can be expressed in terms of the \(S_k \). In fact [1, Vol. 2, p. 39] if \(f(x)=x^n+\sum_{r=1}^{n} a_r x^{n-r} \) then for \(r=1, \ldots, n \) we have

\[
(5)
\]

\[
r! a_r = (-1)^r \det A_r
\]

where \(A_r \) is the \(r \times r \) matrix given by

\[
(6)
\]

In the work that follows we will need to compute the determinant of matrices of the form (6) where the entries \(S_i \) have particular values. All of these are of the general type described in the next result.
Lemma 3. Let \(x, a, k \) be nonnegative integers with \(k \mid x \), say \(x = ky \). Let \(A \) be the \(r \times r \) matrix
\[
A = \begin{pmatrix}
x \\ xa \\ xa^2 \\ \vdots \\ xa^{r-1} \\ xa^r
\end{pmatrix}
\begin{pmatrix}
k & 0 & \cdots & 0 \\ xa & 2k & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ xa^{r-1} & \cdots & (r-1)k & xa
\end{pmatrix}
\]
then \(\det A = k^r a^r \prod_{j=0}^{r-1} (y-j) \).

Proof. Simply use elementary column operations and cofactor expansions; i.e., begin by subtracting \(a \) times column 2 from column 1 and then expand by cofactors of the resulting column 1.

2. Proof of Theorem 1(a). Let \(p \) be a prime and \(F/K \) a function field of genus \(g \). Since constant extensions are essentially unique, we first make the constant extension of degree \(f = \text{ord } q (p) \). Thus without loss of generality we assume that \(F/K \) is a function field with \(|K| = q = 1 \ (p) \) and \(p \neq \text{char } K \). Let \(L(u) \) be the polynomial numerator of the zeta function of \(F \). Because of our assumptions on \(p \) and \(q \) and the form (1) of \(L(u) \) we see that \(L^*(u) \in Z_p[u] \) is a reciprocal polynomial of degree \(2g \). Hence from Corollary 2.1 we have, for \(S_n \) denoting the sums of the \(n \)th powers of the reciprocals of the roots of \(L(u) \),
\[
S_{k(\varphi(p)-1)} = 2g \ (p), \quad k \in \mathbb{Z}^+.
\]
Let \(m = p^{\varphi(p)-1} - 1 \). The coefficients of \(L_m(u) \) can be computed from (5); namely, \(r! b_r = (-1)^r \det A_r^{(m)} \), where
\[
A_r^{(m)} = \begin{pmatrix}
S_m & 1 & \cdots & 0 \\
S_{2m} & S_m & 2 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
S_{rm} & S_{(r-1)m} & \cdots & S_m
\end{pmatrix}
\]
Using \(S_{km} = 2g \ (p) \) and Lemma 3 with \(x = 2g \), \(a = k = 1 \), we deduce
\[
b_r = (-1)^r \binom{2g}{r} (p).
\]
Moreover
\[h_E = L_m(1) = 1 + q^m + \sum_{i=1}^{q-1} (1 + q^{m(p-i)})b_i + b_v. \]

Substituting from (8) we get
\[h_E \equiv 2 + 2 \sum_{i=1}^{q-1} (-1)^i \binom{2g}{i} + (-1)^g \binom{2g}{g} (p). \]

Observing that \((-1)^i \binom{2g}{i} = (-1)^{2g-i} \binom{2g-i}{g-i}\) we conclude
\[h_E \equiv \sum_{i=0}^{2g} (-1)^i \binom{2g}{i} \equiv 0 (p). \]

3. Proof of Theorem 1(b). Suppose now \(F/K\) is a function field of genus \(g\), and \(p\) a prime with \(p = \text{char } K\). Let \(L(u)\) as given by (1) denote the polynomial numerator of the zeta function of \(F\). Assume that \(L^*(u) \not\equiv 1\) in \(Z_p[u]\) and set \(t = \max \{j\mid \text{such that } a_j \not\equiv 0 (p)\}\). Clearly \(1 \leq t \leq g\). Consequently \(L^*(u)\) is a polynomial of degree \(t\) and therefore splits in the extension of \(Z_p\) of degree \(r(t)\). As before denoting by \(S^*_n\) the sum of the \(n\)th powers of the reciprocals of the roots of \(L^*(u)\), we have, as in Corollary 2.1,
\[S_{k(t^r(t),-1)} = t (p), \quad k \in Z^+. \]

If \(E\) is the constant extension of degree \(m = p^r(t) - 1\), then to compute \(h_E\) we need the coefficients \(b_i (i=1, \ldots, g)\) of \(L_m(u)\) as given by (2).

From Lemma 3 with \(x=t\), \(a=k=1\) we see
\[b_j \equiv (-1)^j \binom{t}{j} (p), \quad j = 1, \ldots, t, \]
\[b_j \equiv 0 (p), \quad j = t + 1, \ldots, g. \]

Then
\[h_E = L_m(1) = 1 + q^m + \sum_{i=1}^{q-1} b_i (1 + q^{m(p-i)}) + b_v \]
gives, after substitution from (12) and \(q \equiv 0 (p)\),
\[h_E \equiv 1 + \sum_{i=1}^{t} (-1)^i \binom{t}{i} (p), \]
i.e., \(h_E \equiv \sum_{i=0}^{t} (-1)^i \binom{t}{i} \equiv 0 (p)\). Since \(p^r(t) - 1 \mid p^r(p) - 1\) we have Theorem 1(b).

Note. If \(L(u) \not\equiv 1 (p)\) we can extend the argument to produce a value \(m'\) such that the constant extension \(E/F\) of degree \(m'\) has \(h_E\) divisible by
From Leitzel [3, Theorem 2], we have if \(p | h_M \) and \(T/M \) is the constant extension of degree \(p \) then \(h_T \) is divisible by at least \(p^2 \), since the \(p \)-rank of \(h_M \) is larger than one. Thus \(h_E \) is divisible by \(p^s, s \geq 1 \), if \(E/F \) is the constant extension of degree \(m' = mp^{s-1} \), where \(m \) is the value determined in the above Theorem 1.

I am indebted to the referee for indicating the following more direct proof of this extended result: We have \(L(u) = \prod_{i=1}^{2g} (1 - w_i u) \) where the \(w_i \) are algebraic integers. Let \(L' \) be the splitting field of \(L(u) \) over \(Q \). Let \(P \) be a prime of \(L' \) dividing \(p \). Then \(P \nmid w_i \) for at least one \(i \) (since otherwise \(L(u) \equiv 1 \mod P \), and thus also \(\mod p \)). Let \(L' = Q(w_i) \) and \(P' \) the prime of \(L' \) divisible by \(P \). Then \(e'f' \leq 2g \) where \(e' \) and \(f' \) are ramification index and residue class degree of \(P' \) over \(Q \). Also, the order of the multiplicative group of the residue class ring of the integers in \(L' \) modulo \(P' \) is \(m = (p' - 1)p^{e'(s-1)+1} \). Thus \(w_i \equiv 1 \mod P' \) and so \(h_E = L_m(1) \equiv 0 \mod P' \). But then, \(h_E \equiv 0 \mod p^s \). Arguments similar to those of Theorem 1 can be applied to show that \(m \) can be taken as \((p^{2g} - 1)/p \) in case (a) (where \(p \mid q \)) and \((p^{2g} - 1)/p \) in case (b) (where \(p \mid q \)).

4. **An additional comment.** In §3 we discussed the situation where \(F/K \) is a function field of genus \(g \), \(p = \text{char } K \), and \(L^*(u) \neq 1 \) in \(Z_p[u] \). In this section we discuss the case \(L^*(u) \equiv 1 \) in \(Z_p[u] \).

Let \(F/K \) be a function field of genus \(g \) and \(p \) a prime. Suppose \(L(u) \), the polynomial numerator of the zeta function of \(F \) as given by (1), satisfies the condition

\[
a_i \equiv 0 \mod p, \quad i = 1, \ldots, g.
\]

Then \(L^*(u) = 1 + q^g u^{2g} \) in \(Z_p[u] \) if \(p \neq \text{char } K \) and \(L^*(u) \equiv 1 \) in \(Z_p[u] \) if \(p = \text{char } K \). For a function field satisfying the condition (14) we give an explicit congruence relation for the class number \(h_K \) of any constant extension \(E/F \). This is contained in

Theorem 2. Let \(F/K \) be a function field of genus \(g \) and \(p \) a prime. Suppose \(L^*(u) = 1 + q^g u^{2g} \) in \(Z_p[u] \) and \(E/F \) is a constant extension of degree \(m \). Then if \(d = \gcd(m, 2g) \) we have

\[
h_K \equiv [1 - (-1)^{m/d}q^{d|d|^g}] \mod p.
\]

Proof. Let \(S_n \) again denote the sum of the \(n \)-th powers of the reciprocals of the roots of \(L(u) \). From our assumption on \(L(u) \) and the relations of (4) we deduce

\[
S_n \equiv 0 \mod p, \quad \text{if } 2g \nmid n,
\]

\[
S_n \equiv (-1)^{2gq^{2g}} \mod p, \quad \text{if } n = 2gk.
\]

To compute \(h_K \) for \(E/F \) a constant extension of degree \(m \) it is necessary to determine the coefficients of \(L_m(u) \). These all require the computation of
the determinant of a matrix of the type (7). Because of the relations (16), nonzero entries occur only when \(jm\equiv0 (2g), j=1, \ldots, r\). If \(d=\gcd(m, 2g)\) and \(m=td, 2g=kd\), then the values of \(j\) which yield nonzero entries are precisely \(lk\) for \(1\leq l\leq[d/2]\). Thus using this observation we can express the coefficients as

\[
\frac{(-1)^{2lk-l}}{(lk)!} \frac{(lk-1)!}{k2k \ldots (l-1)k} \times \det \begin{pmatrix}
S_{km} & k & \cdots & 0 \\
S_{2km} & S_{km} & 2k & \cdots & 0 \\
& \ddots & \ddots & \ddots & \ddots \\
& & & S_{(l-1)km} & \cdots & (l-1)k \\
S_{tkm} & & & & & S_{km}
\end{pmatrix}
\tag{17}
\]

Here we have used (16) and cofactor expansions along rows to get the final form. Now apply Lemma 3 with \(x=2g=kd\) and \(a=(-q^\sigma)^{m/d}\). We have then

\[
b_{lk} \equiv \frac{(-1)^{2lk-l}}{l!k!} k'(-q^\sigma)^{m/d} \sum_{j=0}^{d-1} (d - j) (p).
\tag{18}
\]

Substituting this information in

\[
h_E = L_m(1) = 1 + q^\sigma + \sum_{i=1}^{\lfloor d/2 \rfloor} b_i(1 + q^{m(i-1)}) + b_s
\]

we find, for odd \(d\),

\[
h_E \equiv 1 + q^\sigma + \sum_{i=1}^{\lfloor d/2 \rfloor} b_i(1 + q^{m(i-k)}}(p)
\]
or

\[
h_E \equiv 1 + q^\sigma + \sum_{i=1}^{\lfloor d/2 \rfloor} (1 + q^{m(i-k)})\{-1\}^{2lk-l}(-q^\sigma)^{m/d}(d\text{ d}) (p).
\]

Since

\[
q^m(\sigma-k\sigma)(-1)^{l}(-q^\sigma)^{m/d}(d\text{ d}) = (-1)^{d-l}(-q^\sigma)^{m(d-1)/d}
\]

and \(m+d\equiv0 (2)\) this can be rewritten as

\[
h_E \equiv \sum_{l=0}^{d} (-1)^{l}(d\text{ d})((-1)^{m/d}q^\sigma)^{l} (p).
\tag{19}
\]
If d is even a similar argument leads to the same formula. Hence

$$h_E \equiv [1 - (-1)^{m/d} q^{m/2}] (p).$$

Corollary 1. If $\gcd(m, 2g) = 1$, then $h_E \equiv 1 + q^{m/2} (p)$.

Proof. $(m, 2g) = 1$ forces $d = 1$ and $m \equiv 1 (2)$.

Corollary 2. If $2g | m$, then for $m = 2gt$ we have $h_E \equiv [1 - (-1)^{g^2}]^{2g} (p)$.

Corollary 3. If $p = \text{char} K$ and $L(u) \equiv 1$ in $\mathbb{Z}_p[u]$ then $p \nmid h_E$ for any constant extension E/F.

Proof. Clearly $h_E \equiv 1 (p)$ in this case.

Bibliography

