Projective representations of abelian groups
HTML articles powered by AMS MathViewer
- by N. B. Backhouse and C. J. Bradley
- Proc. Amer. Math. Soc. 36 (1972), 260-266
- DOI: https://doi.org/10.1090/S0002-9939-1972-0308329-5
- PDF | Request permission
Abstract:
Let $\omega$ be a factor system for the locally compact abelian group G. Then we show that the finite-dimensional unitary irreducible projective representations of G, having factor system $\omega$, possess a common dimension $d(\omega )$. Using a characterisation of $d(\omega )$ as the index in G of a maximal subgroup on which $\omega$ is symmetric we derive a formula for $d(\omega )$ in the case that G is discrete and finitely generated.References
- A. C. Aitken and H. W. Turnbull, An introduction to the theory of canonical matrices, Blackie, London, 1932.
- N. B. Backhouse and C. J. Bradley, Projective representations of space groups. I. Translation groups, Quart. J. Math. Oxford Ser. (2) 21 (1970), 203–222. MR 260890, DOI 10.1093/qmath/21.2.203
- N. B. Backhouse, Projective representations of space groups. II. Factor systems, Quart. J. Math. Oxford Ser. (2) 21 (1970), 277–295. MR 281803, DOI 10.1093/qmath/21.3.277
- Adam Kleppner, Multipliers on abelian groups, Math. Ann. 158 (1965), 11–34. MR 174656, DOI 10.1007/BF01370393
- Serge Lang, Algebra, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965. MR 0197234
- George W. Mackey, Unitary representations of group extensions. I, Acta Math. 99 (1958), 265–311. MR 98328, DOI 10.1007/BF02392428
- George W. Mackey, Induced representations of locally compact groups. I, Ann. of Math. (2) 55 (1952), 101–139. MR 44536, DOI 10.2307/1969423
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 36 (1972), 260-266
- MSC: Primary 22D12
- DOI: https://doi.org/10.1090/S0002-9939-1972-0308329-5
- MathSciNet review: 0308329