Circle actions on homotopy spheres bounding plumbing manifolds
HTML articles powered by AMS MathViewer
- by Reinhard Schultz
- Proc. Amer. Math. Soc. 36 (1972), 297-300
- DOI: https://doi.org/10.1090/S0002-9939-1972-0309138-3
- PDF | Request permission
Abstract:
Smooth circle actions are constructed on certain homotopy spheres not previously known to admit such actions.References
- Glen E. Bredon, A $\Pi _\ast$-module structure for $\Theta _\ast$ and applications to transformation groups, Ann. of Math. (2) 86 (1967), 434–448. MR 221518, DOI 10.2307/1970609
- William Browder, Surgery and the theory of differentiable transformation groups, Proc. Conf. on Transformation Groups (New Orleans, La., 1967) Springer, New York, 1968, pp. 1–46. MR 0261629
- William Browder and Ted Petrie, Semi-free and quasi-free $S^{1}$ actions on homotopy spheres, Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham), Springer, New York, 1970, pp. 136–146. MR 0263111
- David L. Frank, An invariant for almost-closed manifolds, Bull. Amer. Math. Soc. 74 (1968), 562–567. MR 222906, DOI 10.1090/S0002-9904-1968-12010-5
- Reinhard Schultz, Composition constructions on diffeomorphisms of $S^{p}\times S^{q}$, Pacific J. Math. 42 (1972), 739–754. MR 315731 D. Sullivan, Geometric topology. I: Localization, periodicity, and Galois symmetry, M.I.T. Cambridge, Mass., 1970 (mimeographed).
- Arthur G. Wasserman, Equivariant differential topology, Topology 8 (1969), 127–150. MR 250324, DOI 10.1016/0040-9383(69)90005-6
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 36 (1972), 297-300
- MSC: Primary 57D55; Secondary 57E15
- DOI: https://doi.org/10.1090/S0002-9939-1972-0309138-3
- MathSciNet review: 0309138