CIRCLE ACTIONS ON HOMOTOPY SPHERES
BOUNDING PLUMBING MANIFOLDS

REINHARD SCHULTZ

Abstract. Smooth circle actions are constructed on certain homotopy spheres not previously known to admit such actions.

In this paper we shall prove the following two results:

Proposition A. Let Σ^8 be any homotopy 8-sphere. Then there is a smooth semifree circle action on Σ^8 with S^4 as its fixed point set.

Proposition B. Let Σ^{10} be any homotopy 10-sphere bounding a spin manifold. Then there is a smooth semifree circle action on Σ^{10} with S^4 as its fixed point set.

Combining these with other results, we know that any smooth manifold Σ^n which is piecewise-differentiably homeomorphic to S^n, bounds a spin manifold, and satisfies $n \leq 13$ has a smooth circle action. The above propositions imply the cases $n=8, 10$, while the cases $n=7, 11, 12$ follow because $\Gamma_n = \partial P_{n+1}$ in these cases and every homotopy sphere in ∂P_{n+1} $(n \geq 5)$ has a semifree circle action with a homotopy $(n-4)$-sphere as its fixed point set (e.g., see [3]). Finally, the cases $n=9, 13$ follow from the above remark on ∂P_{n+1} and results of Bredon [1].

Undoubtedly, the central difficulty in obtaining connected Lie group actions on homotopy spheres is the lack of a manageable construction for an arbitrary such manifold. The value of such a realization is obvious in the construction of large orthogonal group actions on homotopy spheres bounding π-manifolds. Bredon’s construction of smooth S^1 and S^3 actions on homotopy spheres in the image of the Milnor-Munkres-Novikov pairing [1] is another illustration of the usefulness of an explicit construction for a given homotopy sphere. In this paper we shall show that certain homotopy spheres in the image of the Milnor plumbing pairing $\sigma_{p,q}: \pi_q(SO_p) \times \pi_p(SO_q) \to \Gamma_{p+q+1}$ (see [4] or [5]) also have smooth circle actions.

Received by the editors July 26, 1971 and, in revised form, March 24, 1972.

AMS 1970 subject classifications. Primary 57D60, 57E15, 57E25; Secondary 57D50, 57D55.

Key words and phrases. Homotopy sphere, smooth semifree circle action, plumbing pairing, equivariant diffeomorphism, Puppe sequence, k-invariant, localized space.

The author was partially supported by NSF grant GP-19530.
actions. Propositions A and B follow from this, results of D. Frank [4] stating that the image of $\sigma_{3,4}$ is Γ_8 and the image of $\sigma_{3,6}$ is $2\Gamma_{10}$, and some homotopy-theoretic computations. I am indebted to D. Frank for suggesting that results like Propositions A and B might be obtainable from [4].

1. Constructing semifree circle actions. We shall construct smooth semifree circle actions on certain homotopy spheres in the image of $\sigma_{p,q}$ by the familiar technique of pasting two S^1 manifolds together via an equivariant diffeomorphism. However, we shall be pasting along a semifree S^1 manifold rather than a free S^1 manifold (which is the usual way of studying semifree actions; e.g., see [2, Chapter III]).

Let p, q and r be positive integers satisfying $2r \leq q+1$. Then S^1 acts orthogonally on R^{q+1} via the representation containing r copies of the standard 2-dimensional representation and a trivial representation; call this representation A_r. Then the induced smooth action on $S^p \times S^q$ given by

\begin{equation}
(z \cdot (x, y)) = (x, A_r(z)y), \quad x \in S^p, \ y \in S^q
\end{equation}

is semifree, and its fixed point set is $S^p \times S^{q-2r}$.

The orthogonal action A_r on S^q may be readily interpreted in terms of the homeomorphism from S^q to the join $S^{2r-1} \ast S^{q-2r}$; namely, it is the free linear action in the first join coordinate (an element of S^{2r-1}) and the trivial action on the other two join coordinates (elements of S^{q-2s} and $[0, 1]$ respectively). One advantage of this interpretation is that the orbit space projection is immediately recognized as the join of the canonical map $p_{r-1}: S^{2r-1} \to CP^{r-1}$ with the identity on S^{q-2r}. It is well known that this map is homotopically equivalent to the $(q-2r+1)$-fold suspension of P^{r-1}.

Lemma 1.2. Let $\alpha \in \pi_p(SO_q)$ be in the image of $\pi_p(U_r)$ and let $\beta \in \pi_q(SO_p)$ be in the image of

$$(S^{q-2r+1}p_{r-1})^*: [S^{q-2r+1}CP^{r-1}, SO_p] \to \pi_q(SO_p).$$

Then the homotopy $(p+q+1)$-sphere corresponding to $\sigma_{p,q}(\alpha, \beta)$ has a semifree circle action whose fixed point set is an ordinary $(p+q+1-2r)$-sphere.

Proof. Let $\varphi: S^p \to U_r$ be a smooth map representing α and let f be the diffeomorphism of $S^p \times S^q$ defined by $f(x, y) = (x, \varphi(x)y)$, where U_r acts orthogonally on S^q; then f is equivariant with respect to the S^1 action defined in (1.1). Let $\psi: S^q \to SO_p$ be a continuous map representing β; the assumption that β factors through $S^{q-2r+1}CP^{r-1}$ implies that ψ may be assumed to be constant on the orbits of the action A_r. If SO_p is taken with
the trivial S^1 action, then the smooth equivariant approximation theorem [7, 1.12] implies that ψ may also be assumed to be smooth. Hence the diffeomorphism $g(x, y) = (\psi(y)x, y)$ is also equivariant with respect to the S^1 action of (1.1); therefore, the commutator $[f, g]$ is also S^1 equivariant.

The action given in (1.1) obviously extends to smooth S^1 actions on the manifolds $D^{p+1} \times S^q$ and $S^p \times D^{q+1}$. Thus if these two manifolds with boundary are pasted together via the equivariant diffeomorphism $[f, g]$, the resulting closed manifold has a smooth circle action. But the resulting closed manifold is merely the homotopy sphere corresponding to $\sigma(\alpha, \beta)$; e.g., see [5, remark preceding 2.1]. Since the fixed point sets of the extended actions on $D^{p+1} \times S^q$ and $S^p \times D^{q+1}$ are $D^{p+1} \times S^{q-2r}$ and $S^p \times S^{q-2r}$ respectively, the fact that $[f, g]$ is the identity on $S^p \times S^{q-2r}$ implies that the fixed point set of the action on $\sigma(\alpha, \beta)$ is the ordinary sphere

$$S^{p+q+2r+1} = D^{p+1} \times S^{q-2r} \cup S^p \times D^{q+1}.$$

It follows immediately that the circle action constructed above is semifree.

2. Proof of main results. The proofs of Propositions A and B are roughly parallel, although the latter is somewhat more complicated.

Proof of Proposition A. Let $\alpha \in \pi_3(SO_4)$ map to the generator of $\pi_3(SO) = \mathbb{Z}$, let β generate $\pi_3(SO_3) = \mathbb{Z}$, and let η generate $\pi_4(S^3) = \mathbb{Z}_2$. According to [4, Example 1, p. 565], the element $\sigma_3(\alpha, \beta, \eta) \in \Gamma_8$ is nonzero for any choice of α. On the other hand, it is well known that α may be chosen to lie in the image of $\pi_3(U_3)$. Since η is the orbit space projection $S^0 * S^3 \to S^0 * S^2$ described in §1, Proposition A follows immediately from Lemma 1.2.

The proof of Proposition B depends on homotopy computations involving 3-primary components; it will be convenient to localize all spaces at the prime 3. A discussion of localization functors appears in [6, Chapter II]; the main property we need is that the topological localization map $I_X: X \to X_{(p)}$ is given in homotopy by the algebraic localization $\pi_*(X) \to \pi_*(X) \otimes \mathbb{Z}(p)$. The following generalization is well known.

Lemma 2.1. Let X be a finite CW complex and let Y be a topological group, so that $[SX, Y]$ is naturally an abelian group. Then there is a natural isomorphism $\alpha_X: [SX, Y_{(p)}] \to [SX, Y] \otimes \mathbb{Z}(p)$ such that $\alpha_X|_X$ is the canonical map $[SX, Y] \to [SX, Y] \otimes \mathbb{Z}(p)$.

We shall need the following computational result:

Lemma 2.2. Let ν' generate $\pi_6(S^3_{(3)}) = \mathbb{Z}_3$, and let $g: S^3 \to \mathbb{C}P^2$ be the canonical projection. Then ν' is in the image of the map $(Sg)^*: [SCP^2, S^3_{(3)}] \to \pi_6(S^3_{(3)})$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
REINHARD SCHULTZ

Proof. Recall that the first two nonzero homotopy groups of \(S^3 \) are \(\mathbb{Z}(3) \) in the dimension 3 and \(\mathbb{Z}_3 \) in dimension 6. These are related by the nontrivial \(k \)-invariant \(P^1 \in H^7(\mathbb{Z}(3), 3; \mathbb{Z}_3) = \mathbb{Z}_3 \).

By the exactness of the Puppe sequence and the mapping cone sequence
\[
S^6 \xrightarrow{g} CP^2 \xrightarrow{h} CP^3 \to S^6,
\]
it suffices to show that \(h^*: \pi_6(S^3) \to [CP^3, S^3] \) is the trivial map. But this is a straightforward consequence of the following two facts:

(i) \(P^1 \) is the first \(k \)-invariant of \(S^3_3 \).
(ii) The suspension of \(P^1 \) (i.e., \(i^3 \in H^k(\mathbb{Z}(3), 2) \)) has a nontrivial image in \(H^6(CP^3; \mathbb{Z}_3) \).

Remark. Since \(S^3 \) is the universal covering group of \(SO_3 \) and \(\pi_1(SO_3) = \mathbb{Z}_2 \), there is an obvious homotopy equivalence from \(S^3_3 \) to \(S^3_3(3) \); consequently, the lemma remains true if \(S^3 \) is replaced by \(SO_3 \).

Proof of Proposition B. Let \(\alpha \in \pi_3(SO_3) = \mathbb{Z} \) be a generator, and let \(\beta \) generate the 3-primary component of \(\pi_6(SO_3) = \mathbb{Z}_{12} \). As in the proof of Proposition A, we know that \(\alpha \) is in the image of \(\pi_3(U_3) \). On the other hand, Lemma 2.2 implies that \(\beta \) is in the image of \((Sg)^*: [SCP^2, SO_3] \to \pi_6(SO_3) \). Since \(\sigma_3, 6(\alpha, \beta) \) is nonzero by results of Frank [4, Example 2, p. 565], some exotic 10-sphere bounding a Spin manifold has a circle action of the desired type by Lemma 1.2. Since \(bSpin_{11} = \mathbb{Z}_3 \) is cyclic, an action on the other one may be constructed by taking an equivariant connected sum of this action with itself along the fixed point set.

References

1. G. E. Bredon, A \(\pi_\ast \)-module structure for \(\Theta_n \) and applications to transformation groups, Ann. of Math. (2) 86 (1967), 434–448. MR 36 #4570.

5. R. Schultz, Composition constructions on diffeomorphisms of \(S^n \times S^1 \), Pacific J. Math. (to appear).

Department of Mathematics, Purdue University, West Lafayette, Indiana 47907