SEPARATION BY CYLINDRICAL SURFACES

STEVEN R. LAY

Abstract. C. Carathéodory has established that two compact sets \(P \) and \(Q \) in Euclidean \(n \)-space can be strictly separated by a hyperplane if each subset of \(n + 1 \) or fewer points of \(Q \) can be strictly separated from \(P \) by a hyperplane. In this paper it is shown that if each subset of \(k \) or fewer points of \(Q \) can be strictly separated from \(P \) by a hyperplane (where \(k \) is a fixed integer, \(1 \leq k \leq n \)), then there exists a cylinder of an appropriate sort containing \(P \) and disjoint from \(Q \).

In 1905, C. Carathéodory [1] established that two compact sets \(P \) and \(Q \) in Euclidean \(n \)-space \(E^n \) can be strictly separated by a hyperplane if each subset of \(n + 1 \) or fewer points of \(Q \) can be strictly separated from \(P \) by a hyperplane. Suppose, however, that less information is known. Specifically, suppose for a fixed integer \(k \) (\(1 \leq k \leq n \)) that each subset of \(k \) or fewer points of \(Q \) can be strictly separated from \(P \) by a hyperplane. Then what can be said about the type of separation possible between \(P \) and \(Q \)? A partial answer to this question for the case where \(P \) consists of a single point and \(k = n \) was given by Hanner and Rådström [2] in the following theorem.

Theorem 1. Let \(Q \) be a compact subset of \(E^n \) and let \(p \) be a fixed point. Suppose that for every \(n \) points of \(Q \) there exists a hyperplane strictly separating those \(n \) points from \(p \). Then there exists a hyperplane containing \(p \) which is disjoint from \(Q \).

In order to generalize this result to the case where \(P \) is an arbitrary compact set, the following concept is useful.

Definition 1. Let \(A \) be a nonempty compact subset of \(E^n \) and let \(F \) be a \(k \)-dimensional subspace of \(E^n \) \((0 \leq k \leq n) \). Then \(C = A + F = \{a + f : a \in A \text{ and } f \in F\} \) is called the \(k \)-cylinder generated by \(A \) and \(F \).
Notice that the 0-cylinder generated by \(A \) is precisely \(A \). The 1-cylinder generated by \(A \) and a line through the origin is just a cylinder in the sense of the usual definition. An \((n-1)\)-cylinder is a pair of parallel supporting hyperplanes and the region between them. The \(n \)-cylinder generated by \(A \) is precisely \(E^n \).

We are now in a position to state our main result. We shall denote the convex hull of a set \(A \) in \(E^n \) by \(\text{conv} \ A \).

Theorem 2. Let \(P \) and \(Q \) be nonempty compact subsets of \(E^n \). Suppose for a fixed integer \(k \) \((1 \leq k \leq n)\) that each subset of \(k \) or fewer points of \(Q \) can be strictly separated from \(P \) by a hyperplane. Then given any \(k \)-cylinder of the form \(C = (\text{conv} \ P) + F \) there exists a \((k-1)\)-cylinder of the form \(D = (\text{conv} \ P) + F \), such that \(D \subseteq C \) and \(D \cap Q = \emptyset \).

It is clear that the Hanner-Rådström result is included in Theorem 2 as the special case where \(P \) is a single point and \(k = n \), for then the \(k \)-cylinder generated by \(P \) is just \(E^n \) and the \((k-1)\)-cylinder containing \(P \) and disjoint from \(Q \) is precisely a hyperplane. Unfortunately the approach used by Hanner and Rådström does not adapt itself to the situation where \(P \) is larger than a single point. In order to prove Theorem 2 in its full generality we recall the following definition and theorems relating to spherical convexity.

Definition 2. A subset \(K \) of a spherical surface in \(E^n \) is said to be strongly convex if \(K \) does not contain antipodal points and if \(K \) contains, with each pair of its points, the small arc of the great circle determined by them.

Theorem 3. Let \(\Omega \) be the unit sphere about the origin in \(E^n \), and let \(\mathcal{A} = \{ A_i : i \in I \} \) be a family of compact strongly convex subsets of \(\Omega \). If each \(n \) or fewer members of \(\mathcal{A} \) have a point in common, then there exists a pair of antipodal points \(\{y, -y\} \) in \(\Omega \) such that each \(A_i \) (\(i \in I \)) intersects \(\{y, -y\} \).

Proof. See Horn [4].

Theorem 4. Let \(\Omega \) be the unit sphere about the origin in \(E^n \), and let \(\mathcal{A} = \{ A_i : i \in I \} \) be a family of compact strongly convex subsets of \(\Omega \). If each \(n+1 \) or fewer members of \(\mathcal{A} \) have a point in common, then there exists a point in common to all the members of \(\mathcal{A} \).

Proof. This follows directly from Helly's theorem [3].

Proof of Theorem 2. Letting \(d(a, b) = \|a - b\| \) for \(a, b \in E^n \), we denote \(\inf\{d(a, b) : a \in A, b \in B\} \) by \(d(A, B) \) for subsets \(A \) and \(B \) of \(E^n \). Define \(\delta = \inf\{d(\text{conv} \ T, \text{conv} \ P) : T \) is a subset of \(k \) or fewer points of \(Q \} \). Since \(P \) and \(Q \) are compact it follows that \(\delta > 0 \). Given a \(k \)-cylinder \(C = (\text{conv} \ P) + F \), if \(Q \cap C = \emptyset \) then the result follows directly. If \(Q \cap C \neq \emptyset \), then we let
\(\Omega \) be the intersection of \(F \) and the unit sphere about the origin in \(E^n \). For each point \(w \in \Omega \) we define \(r_w \) to be the ray from the origin through \(w \) and \(F_w \) to be the \((k-1)\)-dimensional subspace contained in \(F \) which is perpendicular to \(r_w \). Then for each point \(q \in Q \cap C \), we define

\[
A_q \equiv \{ w \in \Omega : S_q \text{ is contained in the component of } C \sim [(\text{conv } P) + F_w] \text{ which intersects } (\text{conv } P) + r_w \}
\]

where \(S_q \equiv \{ x : \| x - q \| < \delta / 2 \} \). (See Figure 1.)

![Figure 1](image)

We claim first that, for each \(q \in Q \cap C \), \(A_q \) is a compact strongly convex subset of \(\Omega \). To see this we pick an \(A_q \) and define, for each \(w \in A_q \), \(S_w \) to be the component of \(C \sim [(\text{conv } P) + F_w] \) which intersects \((\text{conv } P) + r_w \). Thus given two distinct points \(w \) and \(w' \) in \(A_q \) we must show that \(q \in S_x \) where \(x \) is a point on the small arc of the great circle determined by \(w \) and \(w' \). Now \(q \in S_w \cap S_{w'} \) and \(S_w \cap S_{w'} \) is contained in \(S_x \), so \(q \in S_x \). Furthermore, since \(S_q \) is open, \(A_q \) is a compact subset of some open hemisphere and thus contains no antipodal points.

Secondly, we claim that if \(q_1, \ldots, q_m \) \((1 \leq m \leq k)\) are any \(m \) points in \(Q \cap C \), then \(\bigcap_{i=1}^{m} A_{q_i} \neq \emptyset \). To see this we note that \(d(\text{conv}\{q_1, \ldots, q_m\}, \text{conv } P) \geq \delta \). Thus \(d(\text{conv}\{S_{q_1}, \ldots, S_{q_m}\}, \text{conv } P) > \delta / 2 \) and so there exists a hyperplane \(H \) strictly separating \(\{S_{q_1}, \ldots, S_{q_m}\} \) and \(P \). Let \(H' \) be the \((n-1)\)-dimensional subspace parallel to \(H \), and let \(G \equiv H' \cap F \). Now \(F \nparallel H' \) since
H separates P and $\{S_{q_1}, \cdots, S_{q_n}\}$, and so G is a $(k-1)$-dimensional subspace. It follows that $\{S_{q_1}, \cdots, S_{q_m}\}$ is contained in one of the two components of $C \setminus [(\text{conv } P)+G]$, and we may choose $w \in \Omega$ so that r_w is perpendicular to G and $(\text{conv } P)+r_w$ intersects the component that contains $\{S_{q_1}, \cdots, S_{q_m}\}$. Then $w \in \bigcap_{i=1}^{n} A_{q_i}$.

Combining the two claims and Theorem 3, we see that there exists a pair of antipodal points $\{y, -y\}$ in Ω such that each A_q ($q \in Q \cap C$) intersects $\{y, -y\}$. It follows that the $(k-1)$-cylinder $(\text{conv } P)+F_v$ has empty intersection with Q.

Example. To see that Theorem 2 is a best theorem in the sense that one cannot in general weaken the hypotheses and obtain the same conclusion, let P be a circle in E^2 and let $Q = \{q_1, q_2, q_3\}$ be the vertices of a triangle such that P intersects each edge of the triangle but each vertex is outside P. (See Figure 2.) Then each point of Q can be strictly separated from P by a hyperplane, but clearly there does not exist any 1-cylinder generated by P which misses Q.

Theorem 2 is not a proper generalization of Carathéodory's theorem, but by changing the conditions slightly we obtain the following theorem which includes Carathéodory's result.

Theorem 5. Let P and Q be nonempty compact subsets of E^n. Suppose for a fixed integer k ($2 \leq k \leq n+1$) that each subset of k or fewer points of Q can be strictly separated from P by a hyperplane. Then given any $(k-1)$-cylinder of the form $D = (\text{conv } P) + F_1$ there exists a $(k-2)$-cylinder of the form $E = (\text{conv } P) + F_2$ such that $E \subset D$ and $Q \cap D$ is contained in one of the two connected components of $D \sim E$.

Proof. Let $\delta = \inf \{d(\text{conv } T, \text{conv } P) : T \text{ is a subset of } k \text{ or fewer points of } Q\}$. Since P and Q are compact it follows that $\delta > 0$. Given a $(k-1)$-cylinder $D = (\text{conv } P) + F_1$, if $Q \cap D = \emptyset$ then the result follows directly. If $Q \cap D \neq \emptyset$, then we let Ω be the intersection of F_1 and the unit sphere about the origin in E^n. For each point $w \in \Omega$ we define r_w to be the ray from the origin through w and F_w to be the $(k-2)$-dimensional subspace contained in F_1 which is perpendicular to r_w. Then for each point $q \in Q \cap D$,
we define

\[A_q \equiv \{ w \in \Omega : S_q \text{ is contained in the component of} \]
\[D \sim [(\text{conv } P) + F_w] \text{ which intersects } (\text{conv } P) + r_w \]

where \[S_q \equiv \{ x : \| x - q \| < \delta / 2 \} \]. (See Figure 1.)

As in the proof of Theorem 2, we see that each \(A_q \) (\(q \in Q \cap D \)) is a compact strongly convex subset of \(\Omega \) and that if \(q_1, \ldots, q_m \) (\(1 \leq m \leq k \)) are any \(m \) points in \(Q \cap D \), then \(\bigcap_{q \in Q \cap D} A_q \neq \emptyset \). Since \(\Omega \) is the unit sphere about the origin in the \((k-1) \)-dimensional space \(F_1 \), Theorem 4 implies that there exists a point \(y \) in \(\bigcap_{q \in Q \cap D} A_q \). Letting \(E \equiv (\text{conv } P) + F_y \) we have \(Q \cap D \) contained in the component of \(D \sim E \) which intersects \((\text{conv } P) + r_y \).

It should be noted that when \(k = n+1 \), then Theorem 5 is equivalent to the following theorem due to P. Kirchberger [5]. A proof of this equivalence may be found in Lay [6, p. 32].

Theorem 6. Let \(P \) and \(Q \) be nonempty compact subsets of \(E^n \). Then \(P \) and \(Q \) can be strictly separated by a hyperplane if and only if for each subset \(T \) of \(n+2 \) or fewer points of \(P \cup Q \) there exists a hyperplane which strictly separates \(T \cap P \) and \(T \cap Q \).

References

Department of Mathematics, Aurora College, Aurora, Illinois 60507