Separation by cylindrical surfaces
HTML articles powered by AMS MathViewer
- by Steven R. Lay
- Proc. Amer. Math. Soc. 36 (1972), 224-228
- DOI: https://doi.org/10.1090/S0002-9939-1972-0310767-1
- PDF | Request permission
Abstract:
C. Carathéodory has established that two compact sets P and Q in Euclidean n-space can be strictly separated by a hyperplane if each subset of $n + 1$ or fewer points of Q can be strictly separated from P by a hyperplane. In this paper it is shown that if each subset of k or fewer points of Q can be strictly separated from P by a hyperplane (where k is a fixed integer, $1 \leqq k \leqq n$), then there exists a cylinder of an appropriate sort containing P and disjoint from Q.References
- C. Carathéodory, Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen, Math. Ann. 64 (1907), no. 1, 95–115 (German). MR 1511425, DOI 10.1007/BF01449883
- Olof Hanner and Hans Rådström, A generalization of a theorem of Fenchel, Proc. Amer. Math. Soc. 2 (1951), 589–593. MR 44142, DOI 10.1090/S0002-9939-1951-0044142-0 E. Helly, Über Mengen konvexer Körper mit gemeinschaftlichen Punkten, Jabr. Deutsch. Math. Verein. 32 (1923), 175-176.
- Alfred Horn, Some generalization of Helly’s theorem on convex sets, Bull. Amer. Math. Soc. 55 (1949), 923–929. MR 31759, DOI 10.1090/S0002-9904-1949-09309-6
- Paul Kirchberger, Über Tchebychefsche Annäherungsmethoden, Math. Ann. 57 (1903), no. 4, 509–540 (German). MR 1511222, DOI 10.1007/BF01445182 S. Lay, Combinatorial separation theorems and convexity, Ph.D. Dissertation, University of California, Los Angeles, 1971.
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 36 (1972), 224-228
- MSC: Primary 52A35
- DOI: https://doi.org/10.1090/S0002-9939-1972-0310767-1
- MathSciNet review: 0310767