A note on integral closure
HTML articles powered by AMS MathViewer
- by Judith Sally
- Proc. Amer. Math. Soc. 36 (1972), 93-96
- DOI: https://doi.org/10.1090/S0002-9939-1972-0311639-9
- PDF | Request permission
Abstract:
Let R be an integrally closed domain and ${x_i},{y_j}(1 \leqq i \leqq n,1 \leqq j \leqq m)$ R-sequences. Let \[ T = R[x_1^{{\alpha _1}} \cdots x_n^{{\alpha _n}}/y_1^{{\beta _1}} \cdots y_m^{{\beta _m}}],\] where the ${\alpha _i}$ and ${\beta _j}$ are positive integers. If T is integrally closed then \begin{equation}\tag {$*$}{\alpha _1} = \cdots = {\alpha _n} = 1\quad {\text {or}}\quad {\beta _1} = \cdots = {\beta _m} = 1.\end{equation} $( ^\ast )$ is sufficient for T to be integrally closed in the following cases: (1) R is Noetherian and the $({x_i},{y_j})R$ are distinct prime ideals, (2) R is a polynomial ring over an integrally closed domain and the ${x_i}$ and ${y_j}$ are indeterminates.References
- Irving Kaplansky, Commutative rings, Allyn and Bacon, Inc., Boston, Mass., 1970. MR 0254021
- Joseph Lipman, Rational singularities, with applications to algebraic surfaces and unique factorization, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 195–279. MR 276239
- Arthur Mattuck, Complete ideals and monoidal transforms, Proc. Amer. Math. Soc. 26 (1970), 555–560. MR 265362, DOI 10.1090/S0002-9939-1970-0265362-8
- Masayoshi Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0155856
- Günter Scheja, Über ganz-algebraische Abhängigkeit in der Idealtheorie, Comment. Math. Helv. 45 (1970), 384–390 (German). MR 272767, DOI 10.1007/BF02567340
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 36 (1972), 93-96
- MSC: Primary 13B20
- DOI: https://doi.org/10.1090/S0002-9939-1972-0311639-9
- MathSciNet review: 0311639