Rank three affine planes
HTML articles powered by AMS MathViewer
- by Michael J. Kallaher
- Proc. Amer. Math. Soc. 36 (1972), 79-86
- DOI: https://doi.org/10.1090/S0002-9939-1972-0313929-2
- PDF | Request permission
Abstract:
A permutation group has rank 3 if it is transitive and the stabilizer of a point has exactly three orbits. A rank 3 collineation group of an affine plane is one which is a rank 3 permutation group on the points. Several people (see [4], [7], [8], [12]) have characterized different kinds of affine planes using rank 3 collineation groups. In this article we prove the following: Let $\mathcal {A}$ be a finite affine plane of nonsquare order having a rank 3 collineation group which acts regularly on one of its orbits on the line at infinity. $\mathcal {A}$ must be either (i) a Desarguesian plane, (ii) a semifield plane, or (iii) a generalized André plane.References
- Geo. D. Birkhoff and H. S. Vandiver, On the integral divisors of $a^n-b^n$, Ann. of Math. (2) 5 (1904), no. 4, 173–180. MR 1503541, DOI 10.2307/2007263
- M. V. D. Burmester and D. R. Hughes, On the solvability of autotopism groups, Arch. Math. 16 (1965), 178–183. MR 178072, DOI 10.1007/BF01220017
- P. Dembowski, Finite geometries, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 44, Springer-Verlag, Berlin-New York, 1968. MR 0233275
- Donald G. Higman, On finite affine planes of rank $3$, Math. Z. 104 (1968), 147–149. MR 223971, DOI 10.1007/BF01109877
- B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR 0224703
- Michael J. Kallaher, On finite affine planes of rank $3$, J. Algebra 13 (1969), 544–553. MR 247567, DOI 10.1016/0021-8693(69)90116-1
- Michael J. Kallaher, A class of rank three affine planes, Math. Z. 119 (1971), 75–82. MR 295198, DOI 10.1007/BF01110945
- M. J. Kallaher and T. G. Ostrom, Fixed point free linear groups, rank three planes, and Bol quasifields, J. Algebra 18 (1971), 159–178. MR 285625, DOI 10.1016/0021-8693(71)90051-2
- Robert A. Liebler, Finite affine planes of rank three are translation planes, Math. Z. 116 (1970), 89–93. MR 266039, DOI 10.1007/BF01109955
- Heinz Lüneburg, Über projektive Ebenen, in denen jede Fahne von einer nicht-trivialen Elation invariant gelassen wird, Abh. Math. Sem. Univ. Hamburg 29 (1965), 37–76 (German). MR 187140, DOI 10.1007/BF02996310
- Donald Passman, Permutation groups, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0237627
- Olaf Prohaska, Endliche ableitbare affine Ebenen, Geometriae Dedicata 1 (1972), no. 1, 6–17 (German). MR 305227, DOI 10.1007/BF00147376
- Eugene Schenkman, Group theory, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1965. MR 0197537
- K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. Phys. 3 (1892), no. 1, 265–284 (German). MR 1546236, DOI 10.1007/BF01692444
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 36 (1972), 79-86
- MSC: Primary 50D05
- DOI: https://doi.org/10.1090/S0002-9939-1972-0313929-2
- MathSciNet review: 0313929