Note on vector fields in manifolds
HTML articles powered by AMS MathViewer
- by Hans Samelson
- Proc. Amer. Math. Soc. 36 (1972), 272-274
- DOI: https://doi.org/10.1090/S0002-9939-1972-0314068-7
- PDF | Request permission
Abstract:
We give a direct geometric proof of Hopf’s theorem on the sum of indices at the zeros of a vector field in a manifold M, or rather of that part of the theorem that says that the sum is the same for any two vector fields. The main idea is to connect the two fields by a one-parameter family of fields and to make everything transversal (to $M \times I$). The resulting system of curves permits one to read off the theorem.References
- Ralph Abraham and Joel Robbin, Transversal mappings and flows, W. A. Benjamin, Inc., New York-Amsterdam, 1967. An appendix by Al Kelley. MR 0240836 H. Hopf, Vektorfelder in n-dimensionalen Mannigfaltigkeiten, Math. Ann. 96 (1926), 225-250. S. Lefschetz, Continuous transformations of manifolds, Proc. Nat. Acad. Sci. U.S.A. 11 (1925), 290-292. J. Milnor, Differential topology, Lecture Notes, Princeton University, Princeton, N.J., 1959, Theorem 1.35, p. 22.
- René Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17–86 (French). MR 61823, DOI 10.1007/BF02566923
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 36 (1972), 272-274
- MSC: Primary 57D25
- DOI: https://doi.org/10.1090/S0002-9939-1972-0314068-7
- MathSciNet review: 0314068