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Abstract. Let u be a superharmonic function in an open set fí

in R" and let /i be the positive Radon measure associated to u, i.e. ¡i

is a negative constant multiple of the distributional Laplacian A« of

u. Using mostly elementary techniques, the paper deals with the

properties of /< in the large, when «>0 and fi=l?", and in the

small, in some neighbourhood of a point in f!.

I. Introduction and main results. Before presenting our main results,

we give three lemmas.

Lemma 1. If u is positive and superharmonic in R" with /?^3, then as

p-*+oo, the peripheral mean „#(w, x, p) (of u on the sphere S(x, p) of

centre x and radius p) and the volume mean sé(u, x, p) (in the open ball

B(x, p)) have a common limit, X, say, independent of x in R". Further,

u^X in Rn.

Lemma 1 is known, at least implicitly. Here we give a simple proof

(see §2) without using the notion of greatest harmonic minorant.

The measure p associated to a superharmonic function u in an open

set Q in R" with ri^.2 is a nonnegative (Radon) measure in Q such that

<p dp = — pn   u(x) Aç>(x) dx       (<p e @(Q)),
n Jn

where 3>(Q) is the set of infinitely differentiable functions vanishing

outside a compact set in Í2, A is the Laplacian operator, and p2 = (2n)~1,

pn = ((n—2)sn)~1 (m^3), s„ being the surface-area of the unit sphere

5(0, 1) in Rn. (For a nondistributional approach to p and related topics,

see, e.g., du Plessis [3].)

Lemma 2. If u is positive and superharmonic in R" with /?g:3 and p

is the measure associated to u, then

(2) p(B(x, P))^C(n)pn-2^(u,x, p)       (xeR",P>0),

where C(n) is a positive constant depending only on n.

(1)
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Lemma 2 follows easily from (1) (see §3). Lemmas 1 and 2 become

obvious when n—2 since the only positive superharmonic functions in

Ä2 are constants. However, (1) yields (see §4) a local form of Lemma 2

when n=2:

Lemma 3. If u is positive and superharmonic in the open disc B(0, p0) in

R2, pi is the measure associated to u and 0<6< 1, then

(3) pt(B(0, p)) ^ C(6W(u, 0,P)       (0 < p < 6p0),

where C(6) is a positive constant depending only on 6.

In this paper we give three results on the behaviour of pi in the large

(Theorem 1) and in the small (Theorems 2 and 3).

Theorem 1. If u is positive and superharmonic in Rn with n^.3 and pi

is the measure associated to u, then

(4) lim p2-npi(B(x, />)) =0       (x e Rn).
P — + OC

Further, 2—n is the largest possible negative power of p for (4) to hold.

Here is the proof of (4). We may suppose that u is not constant. By

Lemma 1, w=u—X>0 in Rn and s/(w, x, p)—>-0 as p—*-+oo. Since pi is

also associated to w, (4) follows from (2) applied to w. The counter-

example to justify the second part of Theorem 1 is given in §5.

Theorem 2. Let u be superharmonic in an open set Í2 in Rn with n^.2

and let p be the measure associated to u. Then

(5) w(x0) < + co => p({x0}) = 0       (x0 e Q.).

The converse is not true.

The proof of (5) is as follows. When /i^3, there exist two functions

in R", v positive and superharmonic, h harmonic such that

(6) u = v + h

in some neighbourhood co of x0 (Brelot [2, III, §1]). Clearly <y(x0)< + oo

and pi is also associated to v in co; (5) follows from (2) applied to v at x0

(as p-*0). When «=2, we take v=u+e—u(x0) where e>0. The function

i>>0 and superharmonic in some open disc B(x0, pc) and has pi as associ-

ated measure. By (3) applied to v at x„,

pi({x0}) ̂  pi(B(x0, kPt)) ^ C(i)j/(v, x0, lPe) ^ C(l)v(x0) = eC(i),

which implies that pi({xo})=0. The last part of Theorem 2 is dealt with

in §6.
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Theorem 3. Let u be superharmonic in an open set Q ofR" with n^.2,

x0eD. and p the measure associated to u. Then p({x0})=0 if and only if

lim Pn~2sé(u, x0, P) = 0       (n = 3),

lim{l/iog(l/p)K(«, x0, p) = 0       (n = 2).

Same results hold when sé is replaced by Jl'.

The fact that sé and J( can be interchanged follows immediately from

^(u, xB, p) ¿i sé(u, xg, p) < J¿(u, x0, ß„p),

where the constant ßn of the second inequality (due to Beardon [1]), is

given by ß2=e^>2, ßn = (2lny'^^ (n^3).

Next, we note that Lemma 2 gives the 'if part of Theorem 3 when

n^3. In fact, by using the functions v and h in (6), we get that

pn~2sé(v, x0, p)—*0 as />—>-0, and hence p({x0})=0 by (2).

The proofs of the remaining parts of Theorem 3 (see §8 for the 'only if

part, §11 for the 'if part when n = 2) require two results which are more

involved than those we used so far. The first one is the local Riesz decom-

position theorem which we state (to simplify notations) for balls (discs

when w = 2) only.

Theorem A. Let Q. be open in R" with n^.2 and B(0, />)CQ. If u is

superharmonic in Q. and p is associated to u, then there is a harmonic

function hp in B(0, p) such that

(7) u(x) = \       a(\x-y\)dp(y) + hp(x)       (\x\ < p),

where

(8) a(t) = log(l/i)   (n = 2),       a(t) = f2"»   (n ^ 3).

The second result (proved in §7) is a simple application of Theorem A:

Lemma 4.    Under the hypotheses of Theorem A,

(9) J((u, 0, p) = o-t/OM^O, />)) + MO).

Once that (7) and (9) are given, it is worthwhile noting that they yield

two more theorems in the light of our previous results. Without using

the notion of greatest harmonic minorant, we have

Theorem B (Riesz decomposition in R"). If u>0 and superharmonic

in R" with n^.3, p is associated to u and X is the constant in Lemma 1, then

(10) u(x) = X+\  \x- y\2-" dp(y)       (x e R").
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In fact, it is enough to prove (10) at x=0. Applying Lemma 1 and (4)

(both at x=0) to (9) we get that

(11) Hm hp(0) = X,
p-

which, together with (7) at x=0, yields (10).

The second theorem sharpens Lemmas 2 and 3.

Theorem 4.    The inequalities (2) and (3) can be replaced by

(12) p(B(x, P)) ^ pn~2J((u, x, P)       (x eRn,p> 0),

(13) p(B(0, p)) < {1 /log( 1 \%)\J((u, 0,p)       (0 < p ^ 6Po)

respectively. Further, (12) and (13) are sharp.

Inequalities (12) and (13) are proved in §§9 and 10. To show that they

are sharp, it is enough to consider" the fundamental superharmonic

function o-(|x|) (see (8)). The measure associated to a is, by the choice of

pn in (1), the Dirac measure ô0 at the origin 0 (see, e.g., Brelot [2, IV, §2]).

Hence (12) becomes an equality at x=0 for all positive p. When n=2,

cr>0 in 73(0, 1) and (13) becomes an equality when p=0<l=po.

2. Proof of Lemma 1. Since dl(u, x, p) is positive, real-valued and

decreasing, it has a nonnegative finite limit, X(x), say, as />->■+oo.

Further

s#(u, x, p) = np-n    J((u, x, t)tn-x dt

and an easy technique (consisting in writing the integral on the right as

the sum of two integrals on (0, p0) and (p0, p)) gives that sé(u, x, p)-*X(x)

as p—<-+co. To complete the proof, it is enough to show that X(x)^.X(y)

for any two points x, y in R", and this follows from the inequality

(as p-++cc)

st(u, x,p + \x- y\) > {Pl(p + \x- y\)}"^(u, y, P)       (p > 0).

3. To prove Lemma 2, we choose a function cp0 in Q¡(Rn) such that

Ç50=t0, Ç90(x)=l (|x|^l), <p0(x)=0 (|x|^2). Let A70 be the supremum of

|Aç>0|. We apply (1) to the function

cp(x) = cp0(xlp)       (x e 7?").

Clearly cp is a nonnegative function in S/(Rn), equals 1 on 5(0, p), vanishes

outside B(0, 2p), and |Aç>|<A/0/p2. Hence

pi(B(0, p)) = cp dp 5M   cp dp = - pn\        u(x)kcp(x) dx
JB(o.p) Jr" Jmo.2p)

^ pnP-2M0 f       u(x) dx = pnvn2"MoPn-2jtf(u, 0, 2p)
Jiuo.ip)
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where v„ is the volume of B(0, 1). The decreasing property of sé gives (2)

at x=0, and hence everywhere in R".

4. To prove Lemma 3, we choose cp0 in3¡(R2) such that o?0_tO, cp0(x)=l

(\x\^ey <Po(x)=0(\x\> 1(0+1)). With /V/9=sup|A9P0| and <p(x)=<p0(ßxjP),

we obtain that cp is a nonnegative function in 3(R2), equals 1 on B(0, p),

vanishes outside B(0, %p(B+ l)/6) (so that the support of cp is in B(0, p0)),

and that \A<p\^B2p-2Me. Steps identical to those in §3 (with B(0,2p)

replaced by B(0, ¿p(0+l)/0)) yield

p(B(0, P)) <: ¿(0 + \)2M„sé(u, 0, \p(B + l)/0)

<£(0 + \)2Mesé(u,0,P)

whenever O<rj^0/>„.

5. To prove the second part of Theorem 1, we show that if 0<a</? — 2,

then

(14) p2-n+°p(B(0, p))

does not necessarily tend to 0 as p-*+cc. Let w be the function given by

(15) «(0) = +00,       u(x) = |x|-°   (x * 0).

The function w>0 and superharmonic in R" and, by a simple computation,

sé(u, 0, p) = n(n - oc)"V^   Aw(jc) = -a(n - 2 - a) |x|-a-2

(16) (x * 0).

The first equality and (2) at x=0 imply that

(17) 0 = \imp(B(0,p))=p({0}).

Since outside the origin p equals —p„Au times the Lebesgue measure, we

obtain by (17) and (16),

p(B(0, p)) = lim i -pnAu(x) dx = a(n - 2)-1p"-2~a-
d-0 Joe¡x\£p

Hence, with the function u of (15), (14) does not tend to 0 as p-*+oo.

6. We now show that the converse of (5) in Theorem 2 is not true.

When n^3, (15) and (17) provide the counterexample since w(0)= + co

and p({0})=0. When n=2, consider the function u in R2 given by

(18) u(x) = u(xx, x2) =|    -| log{(x, - i)2 + x\}
í(log í)2
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With the measure v defined by

fVe dt
(19) v(f) = \   f(t,0)-f—

Jo /(log ty

for any/continuous with compact support in R2, we have

u(x) -J «(|x-y|)dMy)       (xeR2).

Formula (19) shows that v is a nonnegative Radon measure with compact

support and hence u is superharmonic in R2 (see, e.g., Brelot [2, IV, §1]).

Further v is the measure p associated to u. In fact (without using distribu-

tional convolutions) the measure associated to a(|x— y\) (as a function

of x) is the Dirac measure ôy at y and hence, by two applications of (1)

and Fubini's theorem,

2-np(cp) = -I or(|x - y\)&cp(x) dx dv(y) = 2n     cp(y) dv(y)
Jr1 Jr." Jr.2

for all <p in $¡(R2); this, in turn, implies that pi=v (see, e.g., du Plessis

[3, Theorem 1.30]). Finally (18) and (19) give easily the required condi-

tions m(0)=-|-co and /¿({0})=0 respectively.

7. To prove Lemma 4 let r be such that 0<<-<p. By (7),

J((u, 0, r) = (s^-1)-1 Í o(\x - y\) dp(y) ds(x) + hp(0)
JS(O.r) Jb(O.p)

where ds is the surface-area (arc length when n=2) element on S(0, r).

With y fixed in B(0, p) it is well known that the function av, given by

av(x)=a(\x—y\), satisfies

K, 0, r) = o(r) (r > \y\),

= à(\y\)       (r ^ \y\),

and hence by Fubini's theorem (which holds even when n=2)

JK{u, 0, r) - Äp(0) = Í       J((oy, 0, r) dp(y)
Jbw.p)

= o(r)pi(B(0, r)) + Í o(\y\) dp(y).
Jr<\y\<pJr<\y\<p

Lemma 4 follows from this last equality as r^-p—.

8. Here we prove the 'only if part of Theorem 3 (n^.2). We take the

origin 0 at x0. We may suppose that t/>0 in some -9(0, p0) in O (since the
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addition of a constant c does not alter p and the required limit property

holds for u if and only if it holds for u+c). Let e be a positive number.

By hypothesis p({0})=0 and hence p(B(0, />))-»-0 as p-+0. We choose

two numbers r, p such that 0<r<p^min{l, p0}, p(B(0, p))^%e,

hp(0)lct(r)^-le. Theorem A for radii r and p yields

f      a(\x - y\) dp(y) + hr(x) = a(\x - y\) dp(y) + hp(x)
Jsw.t) Jb(o.p)

whenever |x|<r. Since the integral on the left is (superharmonic whence)

finite q.p., the equality

K(x) = \ a(\x-y\)dp(y) + hl)(x)
Jré\y\<p

holds q.p. and hence everywhere in B(0, r), in particular at x=0. This last

case and Lemma 4 (with radius r) imply that

0 ^ JK(u, 0, r)/a(r) = p(B(0, r)) + f a(\y\)/a(r) dp(y) + \e
Jra|ï|<p

^ p(B(0, r)) + f dp(y) + \e
Jr£\v\<p

= p(B(0, p)) + -|£ ̂  e.

(The hypothesis r<p^l is used in the first two inequalities when n=2.)

Since s is arbitrary, we obtain the required result.

9. To prove (12) of Theorem 4, it is enough to work at x=0 and apply

previous results. Since J"ß(o.p)ljl2_n dp(y) is clearly an increasing func-

tion of p, the formula (7) at x=0 gives that hp(0) is decreasing. Hence

hp(0)^X^0 by (11) and Lemma 1, and (12) follows from (9).

10. We now prove (13). Suppose that 0<c<l and let px = cp0. Clearly

B(0, pi)<=B(0, p0) and, by Theorem A at x=0, we have, for any p^px,

(20) u(0) = Í      Iog(Pl/|y|) dp(y) + g(P)
Jb(o.p)

where

g(P) = h„(0) + log(llPx)p(B(0, p)).

The integral in (20) is an increasing function of p in (0, px] and hence g

is decreasing in (0, px]. Since further g(px) is, by (9), equal to J((u, 0, px)

which is positive, we obtain that g is positive in (0, />,]. If now p^6p0 we

have, by Lemma 4,

Jt(u, 0, p) = g(P) + log(PllP)p(B(0, p))

> \og(Pljp)p(B(0, P)) ^ \og(cj6)pyB(0, p)).
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Thus

fi(B(0, p)) < {l/log(c/0)}^(i., 0, p)       (p ^ 6Po)

for any c such that 0<c<l. As c-*-\ —, we get

M>5(0, P)) ̂  {l/log(l/0)M>, 0, p)       (p ^ 0po).

If in this last inequality we replace p and 0 by p+£p0 and 0+e respectively,

we get

p(B(0, p)) <: p(B(0, p + ePo)) ̂  {l/log(l/(0 + e))}0/(u, 0, p + ePo)

which in turn gives (13) as £-»-0+.

11. We finally prove the 'if part of Theorem 3 (at x0=0) in the case

where «=2. We may suppose that_«>0 in some B(0, p0) in £i (see §8).

Since (13) holds when p=6p0 we can replace 0 by p/p0 and hence

^(5(0, p)) < {l/log(p0/p)}^(M, 0, p)        (p < p0).

Since the hypothesis of the theorem implies that the right-hand side

tends to zero as p->0, the result follows.
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