On measures associated to superharmonic functions
HTML articles powered by AMS MathViewer
- by Ü. Kuran
- Proc. Amer. Math. Soc. 36 (1972), 179-186
- DOI: https://doi.org/10.1090/S0002-9939-1972-0316728-0
- PDF | Request permission
Abstract:
Let u be a superharmonic function in an open set $\Omega$ in ${R^n}$ and let $\mu$ be the positive Radon measure associated to u, i.e. $\mu$ is a negative constant multiple of the distributional Laplacian $\Delta u$ of u. Using mostly elementary techniques, the paper deals with the properties of $\mu$ in the large, when $u > 0$ and $\Omega = {R^n}$, and in the small, in some neighbourhood of a point in $\Omega$.References
- A. F. Beardon, Integral means of subharmonic functions, Proc. Cambridge Philos. Soc. 69 (1971), 151–152. MR 281937, DOI 10.1017/s0305004100046491
- M. Brelot, Éléments de la théorie classique du potentiel, “Les Cours de Sorbonne”, vol. 3, Centre de Documentation Universitaire, Paris, 1959 (French). MR 0106366
- Nicolaas du Plessis, An introduction to potential theory, University Mathematical Monographs, No. 7, Hafner Publishing Co., Darien, Conn.; Oliver and Boyd, Edinburgh, 1970. MR 0435422
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 36 (1972), 179-186
- MSC: Primary 31B05
- DOI: https://doi.org/10.1090/S0002-9939-1972-0316728-0
- MathSciNet review: 0316728