Normality of powers implies compactness
HTML articles powered by AMS MathViewer
- by S. P. Franklin and R. C. Walker
- Proc. Amer. Math. Soc. 36 (1972), 295-296
- DOI: https://doi.org/10.1090/S0002-9939-1972-0415571-1
- PDF | Request permission
Abstract:
In this note we give a short proof for the theorem of N. Noble which asserts that each power of a ${T_1}$-space being normal implies that the space is compact.References
- S. P. Franklin, D. J. Lutzer and B. V. S. Thomas, On subcategories of TOP, Notices Amer. Math. Soc. 18 (1971), 442. Abstract #71T-G60.
- Irving Glicksberg, Stone-Čech compactifications of products, Trans. Amer. Math. Soc. 90 (1959), 369–382. MR 105667, DOI 10.1090/S0002-9947-1959-0105667-4
- Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199
- H. Herrlich and G. E. Strecker, Algebra $\bigcap$ topology=compactness, General Topology and Appl. 1 (1971), 283–287. MR 308235
- James Keesling, Normality and infinite product spaces, Advances in Math. 9 (1972), 90–92. MR 309043, DOI 10.1016/0001-8708(72)90031-X
- N. Noble, Products with closed projections. II, Trans. Amer. Math. Soc. 160 (1971), 169–183. MR 283749, DOI 10.1090/S0002-9947-1971-0283749-X
- A. H. Stone, Paracompactness and product spaces, Bull. Amer. Math. Soc. 54 (1948), 977–982. MR 26802, DOI 10.1090/S0002-9904-1948-09118-2
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 36 (1972), 295-296
- MSC: Primary 54D30
- DOI: https://doi.org/10.1090/S0002-9939-1972-0415571-1
- MathSciNet review: 0415571