A NEW PROOF OF A THEOREM ON QUASITRIANGULAR OPERATORS

GLENN R. LUECKE

ABSTRACT. P. R. Halmos has given a proof of the equivalence of two definitions for quasitriangular operators. A short, elementary proof of this fact is given here.

In his paper Quasitriangular operators [1], Halmos proved the equivalence of the conditions (Δ₀) and (Δ₂) for operators A on Hilbert space H (dim H = \(\infty \)). An operator satisfying (Δ₀) or (Δ₂) is called quasitriangular. The proof that (Δ₀) implies (Δ₂) is trivial. However, Halmos uses a three page proof to show that (Δ₂) implies (Δ₀). The following is a short and completely elementary proof of this fact.

Operator A satisfies condition (Δ₂) if there exists a sequence \(\{E_n\} \) of (orthogonal) projections of finite rank such that \(E_n \rightarrow I \) (strong topology) and \(\|AE_n - E_nAE_n\| \rightarrow 0 \). Operator A satisfies condition (Δ₀) if for every projection P of finite rank and for every \(\varepsilon > 0 \) there exists a finite rank projection \(E \geq P \) such that \(\|AE - EAE\| < \varepsilon \).

Theorem (Halmos). If A satisfies condition (Δ₂), then A satisfies condition (Δ₀).

Proof. Use the notation above and let \(Q_n \) be the projection on \(E_n(N) \), where \(N = P(H) \). Let \(\frac{1}{2} > \delta > 0 \) be given. Since \(\dim N < \infty \) and since \(E_ng \rightarrow g \) for each \(g \in H \), there exists \(n_0 \) such that for all \(n \geq n_0 \), \(\|E_ng - g\| < \delta \|g\| \) for all \(g \in N \). Let \(n \geq n_0 \) and let \(f \in E_n(N) \), \(\|f\| = 1 \), \(f = E_ng \), \(g \in N \). Then \(\|g\| \leq \|g - E_ng\| + \|E_ng\| \leq \delta \|g\| + 1 \) so that \(\|g\| \leq (1 - \delta)^{-1} \). Then
\[
\|Q_nf - Pf\| = \|f - Pf\| = \|E_ng - PE_ng\|
\leq \|E_ng - Pg\| + \|Pg - PE_ng\|
\leq \|E_ng - g\| + \|P\| \|g - E_ng\|
\leq (1 + \|P\| \cdot \delta \|g\| \leq 2(1 - \delta)^{-1}\delta < 4\delta.
\]

Furthermore if \(f \in N \), \(\|f\| = 1 \), then \(Pf = f \) and \(Q_nf = E_nf \). Hence for \(n \geq n_0 \), \(\|Q_nf - Pf\| = \|E_nf - f\| < \delta \). Combining this with the previous

Received by the editors April 26, 1972 and, in revised form, June 9, 1972.

Key words and phrases. Operators, Hilbert space, quasitriangular operators.

© American Mathematical Society 1973
statement we have that, for each \(n \geq n_0 \), \(\|Q_n f - Pf\| < 4\delta \) for all \(f \in N \cup E_n(N), \|f\| = 1 \). If \(f \in (N \cup E_n(N))^\perp \subseteq N^\perp \cap (E_n(N))^\perp \), then \(Q_n f = Pf = 0 \).

Taking the supremum (for each fixed \(n \geq n_0 \)) of \(\|Q_n f - Pf\| \) over all \(\|f\| = 1 \), we obtain \(\|Q_n - P\| \leq 4\delta \). Thus \(\|Q_n - P\| \to 0 \).

Define \(O_n \) so that \(E_n(H) = E_n(N) \oplus O_n \) and let \(P_n \) be the projection on \(N \oplus O_n \). Then \(P_n \) has finite rank, \(P_n \geq P \) and, since \(Q_n \) is the projection on \(E_n(N) \), \(\|E_n - P_n\| = \|Q_n - P\| \to 0 \). Thus since \(\|AE_n - E_n AE_n\| \to 0 \) and \(\|E_n - P_n\| \to 0 \), we obtain \(\|AP_n - P_n AP_n\| \to 0 \). Therefore condition \((\Delta_0)\) holds.

Reference

Department of Mathematics, Iowa State University, Ames, Iowa 50010