A NEW CHARACTERIZATION OF SEPARABLE GCR-ALGEBRAS
TROND DIGERNES

Abstract. It is shown that a separable C*-algebra \(\mathcal{A} \) is GCR if and only if the set of central projections in its enveloping von Neumann algebra \(\mathcal{B} \) is generated, as a complete Boolean algebra, by the set of open, central projections in \(\mathcal{B} \).

1. Let \(\mathcal{A} \) be a C*-algebra, and \(\mathcal{B} \) its enveloping von Neumann algebra, that is, \(\mathcal{B} = \pi_u(\mathcal{A})'' \), where \(\pi_u \) is the direct sum of all cyclic representations of \(\mathcal{A} \). The representation \(\pi_u \) is faithful, and we may therefore consider \(\mathcal{A} \) as a sub-C*-algebra of \(\mathcal{B} \). To each (nondegenerate) representation \(\pi \) of \(\mathcal{A} \) there corresponds a projection \(E' \in \mathcal{B}' = \pi_u(\mathcal{A})' \) such that \(\pi \) may be identified with the map \(A \in \mathcal{A} \mapsto AE' \in \mathcal{B}E' \) [2, §§5 and 12]. A projection \(E \in \mathcal{B} \) is said to be open if it supports a left ideal in \(\mathcal{A} \); that is, if there is a left ideal \(J \) in \(\mathcal{A} \) such that \(J = BE \), where "-" denotes strong closure [1]. We let \(\mathcal{P}_0 \) denote the set of all central projections in \(\mathcal{B} \), \(\mathcal{P}_0 \) the set of open projections in \(\mathcal{P} \) and \((\mathcal{P}_0) \) the Boolean algebra generated by \(\mathcal{P}_0 \) in \(\mathcal{P} \). With these notations the following has been proved by H. Halpern and the author [5]:

1. \(\mathcal{A} \) is CCR if and only if \(\mathcal{P}_0 \) is strongly dense in \(\mathcal{P} \).
2. If \(\mathcal{A} \) is GCR, then \((\mathcal{P}_0) \) is strongly dense in \(\mathcal{P} \).

The purpose of this paper is to obtain a converse to 2, at least in the separable case.

For the general theory of C*-algebras and von Neumann algebras we refer the reader to the two books of Dixmier ([2], [3]), especially §§4, 5 and 12 of [2].

2. With notations as above we have:

Theorem. For a separable C*-algebra \(\mathcal{A} \) the following two conditions are equivalent:

(i) \(\mathcal{A} \) is GCR;
(ii) \((\mathcal{P}_0) \) is strongly dense in \(\mathcal{P} \).

Proof. (i) \(\Rightarrow \) (ii). See [5].
(ii) \Rightarrow (i). To prove this we use the following characterization of separable GCR algebras, due to Glimm: \mathcal{A} is GCR if and only if any two irreducible representations of \mathcal{A} with the same kernel are equivalent [4].

So let π_1, π_2 be irreducible representations of \mathcal{A} with $\ker \pi_1 = \ker \pi_2$, and let Q_1, Q_2 be the central supports of the minimal projections in $\mathcal{B}' = {}^\pi_\iota(\mathcal{A})'$ corresponding to π_1 and π_2 respectively. (The central support C_E of a projection E in a von Neumann algebra \mathcal{B} is defined by $C_E = \inf \{P \in \mathcal{P}; PE = E\}$.) Then Q_1 and Q_2 are minimal in \mathcal{P}. It suffices to show that $Q_1 = Q_2$. We argue by contradiction: Suppose $Q_1 \neq Q_2$; then $Q_1 Q_2 = 0$, by minimality. Let \mathcal{P}_c denote the set of closed, central projections, i.e. $\mathcal{P}_c = \{I - P; P \in \mathcal{P}_0\}$ and set $\mathcal{P}_c = \mathcal{P}_0 \cup \mathcal{P}_c$.

Claim. There is a $P \in \mathcal{P}_c$ such that $Q_1 \leq P$ and $Q_2 \leq I - P$.

Assume, for a moment, this has been proved, and, for definiteness, let P be open. Then there is an ideal J in \mathcal{A} such that $J = BP$, and consequently there is an $A \in J$ with $AQ_1 \neq 0$, since $0 \neq Q_1 \leq P$. On the other hand, $AQ_2 = AP \cdot Q_2(I - P) = AQ_2(I - P) = 0$, contradicting our assumption that $\ker \pi_1 = \ker \pi_2$, and we are through.

So it remains only to prove the Claim. Again we argue by contradiction: Assume there are distinct, minimal projections Q_1 and Q_2 in \mathcal{P} such that,

\[(*) \text{ for all } P \in \mathcal{P}_c, (I - P)Q_1 \neq 0 \text{ or } PQ_2 \neq 0. \]

Let $Q = Q_1 + Q_2$ and consider the set:

\[\mathcal{P}(Q) = \{P \in \mathcal{P}; PQ = Q \text{ or } PQ = 0\}. \]

By (\ast) and by minimality of Q_1 and Q_2, $\mathcal{P} \subseteq \mathcal{P}(Q)$; and by minimality of Q_1 and Q_2 again, $\mathcal{P}(Q)$ is closed under finite unions, finite intersections and complementation. It follows that $\langle \mathcal{P}_0 \rangle = \langle \mathcal{P}_c \rangle \subseteq \mathcal{P}(Q)$. Now, by assumption there is a net $\{P_\alpha\}$ from $\langle \mathcal{P}_0 \rangle$ such that $P_\alpha \rightarrow Q_1$ strongly, and, by minimality of Q_1, we may assume $P_\alpha \geq Q_1$ for all α. But then, since $\langle \mathcal{P}_0 \rangle \subseteq \mathcal{P}(Q)$, also $P_\alpha \geq Q_1 + Q_2$ for all α, and consequently $Q_1 = \lim P_\alpha \geq Q_1 + Q_2$, contradiction.

This completes the proof of the theorem.

3. Remark. In the course of the proof we have also established the following: If \mathcal{A} is a C^*-algebra (separable or not) with the property that $\langle \mathcal{P}_0 \rangle$ is dense in \mathcal{P}, then any two factor-representations of \mathcal{A} with the same kernel are quasi-equivalent.

References

Department of Mathematics, University of California, Los Angeles, California 90024