SELECTION OF REPRESENTING MEASURES FOR INNER PARTS

PETER D. TAYLOR

Abstract. If a compact convex set K has an inner part Δ then there is a selection of pairwise boundedly absolutely continuous representing measures for Δ if and only if K is finite dimensional.

Let K denote a compact convex set in a LCTVS, $A(K)$ the affine continuous real functions on K, $\mathcal{P}(K)$ the set of regular Borel probability measures on K. Let $\Phi: \mathcal{P}(K) \to K$ be the map which associates to each measure μ its barycentre. Then Φ is affine, weak* continuous, and onto K. If $\Phi(\mu) = x$ we say μ represents x.

If L is any convex set, $x, y \in L$ and $r > 0$, we say $[x, y]$ extends by r in L if $x + r(x - y) \in L$ and $y + r(y - x) \in L$. We write $x \sim y$ if $\exists r > 0$ such that $[x, y]$ extends by r in L. This is an equivalence relation on L and the equivalence classes are the parts of L. It is easy to show that Φ carries parts into parts: If Π is a part of $\mathcal{P}(K)$ then $\Phi(\Pi)$ is contained in a part of K. Conversely if Δ is a part of K and F is any finite subset of Δ then there exists a part Π of $\mathcal{P}(K)$ such that $F \subset \Phi(\Pi)$. Indeed if $F = \{x_1, x_2, \ldots, x_n\}$ choose y_i and z_i in K such that $x_i \in (y_i, z_i)$, the open line segment with endpoints y_i and z_i, and $x_i \in (y_i, z_i)$ ($2 \leq i \leq n$). If $\Phi(\mu_i) = y_i$ and $\Phi(\nu_i) = z_i$ for $\mu_i, \nu_i \in \mathcal{P}(K)$, then the part Π containing $\sum (\mu_i + \nu_i)/(2n - 2)$ satisfies $F \subset \Phi(\Pi)$. Indeed since $x_i \in (y_i, z_i)$ for each i, we can clearly find a representing measure ω for x_i in Π. Since $x_i \in (y_i, z_i)$, an affine combination of μ_i and ω yields a representing measure for x_i in Π.

Thus if Δ is a part of K one might ask whether

\begin{equation}
\Delta = \Phi(\Pi) \quad \text{for some part } \Pi \text{ of } \mathcal{P}(K).
\end{equation}

Indeed Bear posed this question in [3] and reproduced an example of Har'kova [4] to show that (1) need not hold if $\mathcal{P}(K)$ is replaced by $\mathcal{P}(\Gamma)$ where Γ is the Shilov boundary of $A(K)$.

Since two probability measures μ and ν on K are in the same part of $\mathcal{P}(K)$ if and only if $\mu \leq k\nu$ and $\nu \leq k\mu$ for some k, condition (1) asserts

Received by the editors September 11, 1970.

the existence for Δ of a selection of representing measures on K which are pairwise boundedly absolutely continuous. There are two special cases when (1) is true for all parts Δ of K. One is when K is a simplex, for then there are unique maximal representing measures [6, §9], the other when K is finite dimensional (Theorem 1).

Let $K' = \{x \in K : (\forall y \in K)(\exists r > 0)x + r(x - y) \in K\}$. It can happen that $K' = \emptyset$, but if $K' \neq \emptyset$ it is a part of K called the inner part. Finite dimensional convex sets, for example, always have nonempty inner parts. In Theorem 1 we show that if $\Delta = K' \neq \emptyset$ then (1) holds for Δ if and only if K is finite dimensional.

First some preliminaries. If L is a compact convex set, $x, y \in L$ and $x \sim y$; let

$$d(x, y) = \inf\{\log(1 + 1/r) : [x, y] \text{ extends by } r\}.$$

In [3, Lemma 3.4] it is shown that d is a metric on each part of L, called the part metric. Now denote by d and D the part metrics on K and $\mathcal{P}(K)$ respectively and let

$$b(x, r) = \{y \in K : d(x, y) \leq r\} \quad \text{and} \quad B(\mu, r) = \{\nu \in \mathcal{P}(K) : D(\mu, \nu) \leq r\}.$$

Lemma 1. Suppose A is a part of K, U a part of $\mathcal{P}(K)$, and $A = \bigcup_{i=1}^{n} \mathcal{B}(v, r)$. Then there exist $\mu \in \Pi$ and positive numbers M and k such that if $x = \Phi(\mu)$ then

$$b(x, \log(1 + 1/M)) \subset \Phi(B(\mu, \log k)).$$

Proof. If $\nu \in \Pi$ then the sets $\Phi(B(\nu, r))$ are closed in the part metric topology. Indeed suppose $x_n = \Phi(\mu_n)$ with $\mu_n \in B(\nu, r)$ and $d(x_n, x) \to 0$. Choose a subset μ_n converging weak* to μ. Since $B(\nu, r)$ is weak* closed (easy to check), $\mu \in B(\nu, r)$. Since Φ is weak* continuous, x_n converges in K to $\Phi(\mu)$. But since $d(x_n, x) \to 0$, x_n converges in K to x, hence $x = \Phi(\mu) \in \Phi(B(\nu, r))$. (It is an easily verified general fact that in any part of a compact convex set the part metric topology is stronger than the relativized compact topology.)

Since $\Delta = \Phi(\Pi) = \bigcup_{n=1}^{\infty} \Phi(B(\nu, n))$ and the part metric on Δ is complete [1, §3], the Baire category theorem tells us that we can find $x \in \Delta$ and integers h and M such that $b(x, \log(1 + 1/M)) \subset \Phi(B(\nu, h))$. Choose $\mu \in \Pi$ such that $\Phi(\mu) = x$ and choose k such that $B(\nu, h) \subset B(\mu, \log k)$. \square

Lemma 2. Suppose $x \in K^i$. Then $\exists \delta > 0$ such that

$$y \in K \Rightarrow x + \delta(x - y) \in K.$$

Proof. Let $H = K - x$. Then $0 \in H^i$ and so $H \cap -H$ is closed, convex and absorbs each point of H and $-H$. Since H is compact, convex,
$H \cap -H$ absorbs H \cite[Corollary 10.2]{5}. Thus $\exists \delta > 0$ such that $\delta H \subset H \cap -H \subset -H$. Thus

$$y \in K \Rightarrow y - x \in H \Rightarrow \delta(y - x) \in -H \Rightarrow x + \delta(x - y) \in K. \quad \square$$

If A is a normed linear space and $\epsilon \geq 0$ let $B_\epsilon = \{ h \in A : \|h\| \leq \epsilon \}$.

Lemma 3. Suppose E is a normed linear space and G is a weak* closed subspace of the dual space E^*. Suppose $x \in E^*$, $r \geq 0$ and $(x + B_r) \cap G = \emptyset$. Then $\exists f \in E$ such that $\|f\| = 1$, $f(G) = 0$ and $f(x) > r$.

Proof. $x + B_\epsilon$ is weak* compact and G is weak* closed. Hence $\exists f \in E$ such that $\|f\| = 1$, $f(G) < \alpha$ and $f(x + B_r) \supseteq \alpha$ for some α. Since G is a subspace, $\alpha > 0$ and $f(G) = 0$. Since $\|f\| = 1$ we can find $y \in B_\epsilon$ such that $f(y) > r - \alpha$. Then $x - y \in x + B_r$ so $f(x - y) \geq \alpha$ hence $f(x) \geq \alpha + f(y) > r$. \quad \square

Now for the main theorem. We always think of K as embedded in the Banach space $A(K)^*$ with the weak* topology. The norm of $A(K)^*$ provides a metric topology on K which we will refer to as the norm topology.

Theorem 1. Suppose $\Delta = K^i \neq \emptyset$. Then the following are equivalent.

1. $A = \Phi(\Pi)$ for some part Π of $\mathcal{P}(K)$.
2. K is finite dimensional.

Proof. ($1 \Rightarrow 2$). Suppose (1) and suppose that K is metrizable. We will show that, in this case, K is finite dimensional. Then we will reduce the general case to this one.

We first show that K is norm separable. If $\mu \in \Pi$ then $\Pi \subset L^1(\mu)$ (via Radon Nikodym), and the norm topology that Π gets from $L^1(\mu)$ is the same as the norm topology it gets as a subset of $C(K)^*$. Indeed if $g, h \in L^1(\mu)$ then

$$\sup_{f \in C(K), \|f\| = 1} \int f(g - h) \, d\mu = \|g - h\|_1,$$

where $\|\cdot\|$ denotes the variation norm in the Banach space $\mathcal{M}(K)$ of Radon measures on K. Since $L^1(\mu)$ is separable (K is metrizable), Π is norm separable in $C(K)^*$. Since Φ is the restriction to $\mathcal{P}(K)$ of the natural, norm-decreasing surjection $\Phi : C(K)^* \rightarrow A(K)^*$, $\Delta = \Phi(\Pi)$ is norm separable. Since $\Delta = K^i$ is norm dense in K, K is norm separable.

Now we show that K is norm compact. Since K is norm complete it will be enough to find for any $\epsilon > 0$ a finite set $F \subset A(K)^*$ such that $K \subset F + B_\epsilon$. So suppose $\epsilon > 0$. Choose μ, M, k and x from Lemma 1 and δ from
Lemma 2 so that $\delta(1+1/M) \leq 1$. Since K is norm separable, we can cover K with countably many balls of norm radius $r = \varepsilon/2M$. A finite number of these balls contains all but at most $\gamma = \varepsilon/2kM$ of the measure μ. Let P be a finite dimensional subspace of $A(K)^*$ containing x and the centres of these finitely many balls.

We claim that $K \subseteq P + B_x$. Indeed suppose $y \in K$ but $y \notin P + B_x$. Let $z = x + (\delta/M)(y - x)$. Then $z \in K$ and $d(x, z) \leq \log(1+1/M)$. Indeed $x + M(x - z) = x + \delta(x - y)$ which is in K by Lemma 2, and $z + M(z - x) = x + \delta(1+1/M)(y - x)$ which is in K since $\delta(1+1/M) \leq 1$. So by Lemma 1 we can choose $v \in B(\mu, \log k)$ such that $z = \Phi(v)$. An easy computation shows that $dv = g d\mu$ with $1/k \leq g \leq k$. Also, since P is weak* closed and $y \notin P + B_x$ we can find $f \in A(K)$ such that $\|f\| = 1$, $f(P) = 0$ and $\langle f(y) \rangle > \varepsilon$ (Lemma 3). Then

$$f(z) = (\delta/M)f(y) > \varepsilon\delta/M,$$

and

$$v(f) = \int fg \ d\mu = \int_{|\|f\| \leq r}fg \ d\mu + \int_{|\|f\| > r}fg \ d\mu \leq r \int g \ d\mu + \|f\| \mu(|f| > r) \leq r + k\gamma = \varepsilon\delta/M$$

(where $\mu(|f| > r) \leq \gamma$ since $|f(w)| > r \Rightarrow w \notin P + B_x$). Since $f \in A(K)$ and $\Phi(v) = z$ we must have $v(f) = f(z)$, a contradiction.

So $K \subset P + B_x$. Hence $K = [(K + B_x) \cap P] + B_x$. Now $(K + B_x) \cap P$ is finite dimensional and norm bounded, so relatively norm compact, and we can choose a finite set $F \subset A(K)^*$ so that $F + B_x$ contains it. Hence $K \subset F + B_x$.

So K is norm compact. We deduce that the unit ball B_1 of $A(K)^*$ is norm compact. Indeed it follows from the Hahn Banach Theorem that every element of $A(K)^*$ is given by a Radon measure on K. Use the Hahn decomposition of this measure and the fact that any probability measure on K has a barycentre in K to deduce that, for any $\lambda \in B_1$, there exists $k, h \in K$ and $0 \leq \alpha, \beta \leq 1$ such that

$$\lambda(f) = \alpha f(k) - \beta f(h) \quad (f \in A(K)).$$

Thus B_1 is contained in a continuous image of $K \times K \times [0, 1] \times [0, 1]$, and is norm compact. It follows that $A(K)^*$ is finite dimensional, and so is K.

Now drop the metrizability assumption; suppose K has (1) but is not finite dimensional. Choose a countably infinite, linearly independent sequence $\{f_n\} \subset A(K)$ such that $\|f_n\| \leq 2^{-n}$. Define the map Ψ from K into l^2 by $\Psi(x) = f_n(x)$. Ψ is affine and continuous, hence maps K onto a compact convex subset H of l^2. From Lemma 4 below $H^1 = \Psi(K^1) \neq \emptyset$. Since every $x \in K^1$ has a representing measure in Π, every $h \in H^1$ has a
representing measure in \(\Pi \circ \Psi^{-1} = (\mu \circ \Psi^{-1}; \mu \in \Pi) \). Since \(\Pi \) is a part of \(\mathcal{P}(K) \), \(\Pi \circ \Psi^{-1} \) is contained in a part of \(\mathcal{P}(H) \) (from linearity of the map \(\mu \rightarrow \mu \circ \Psi^{-1} \)). So \(H \) has property (1) and since it is metrizable it is, by the first part of the proof, finite dimensional. This contradicts the linear independence of \(\{ f_n \} \).

Lemma 4. Suppose \(K \) and \(H \) are convex sets and \(K \neq \emptyset \). Suppose \(\Psi: K \rightarrow H \) is affine and onto. Then \(H = \Psi(K) \).

Proof. Clearly \(\Psi(K') \subset H' \). Assume \(x \in H' \). Choose \(z' \in K' \) and let \(z = \Psi(z') \). Since \(x \in H' \), \(x = \lambda z + (1 - \lambda)w \) for some \(w \in H \), \(0 < \lambda < 1 \). Choose \(w' \in K \) such that \(\Psi(w') = w \). Then if \(x' = \lambda z' + (1 - \lambda)w' \) we have \(\Psi(x') = x \) and \(x' \in K' \) since \(z' \in K' \) and \(0 \leq \lambda < 1 \). So \(x \in \Psi(K) \).

(2)\(\Rightarrow \) (1). Suppose \(K \) is of dimension \(m \) and is in fact contained in \(R^m \). If \(x \in K' \) then \(K \) contains an open line segment containing \(x \) in the direction of each coordinate axis. From the convexity of \(K \) we deduce that \(K \) and hence \(K' \) contains an open ball in \(R^m \) containing \(x \). Hence \(K' \) is open in \(R^m \).

Choose \(\{ z_i \} \), a countable dense subset of \(E(K) \). Let \(\mu = \sum_i \delta(z_i)2^{-i} \) (\(\delta(z) \) = delta measure at \(z \)). We will show \(K' \subset \Phi(K) \) where \(\Pi \) is the part of \(\mathcal{P}(K) \) containing \(\mu \). Choose \(y \in K' \). Let \(\Phi(\mu) = x \in K \). Since \(y \in K' \) we can choose \(w \in K \) and \(1 > \alpha > 0 \) so \(y = \alpha x + (1 - \alpha)w \). Choose \(\varepsilon > 0 \) so, \(\forall g \in R^m, ||g - w|| < \varepsilon \Rightarrow g \in K \) (\(||\cdot|| \) is Euclidean norm in \(R^m \)).

Choose \(n \) so \(\{ z_1, z_2, \cdots, z_n \} \) is an \(\varepsilon \)-net for \(E(K) \). We claim that \(w \in \text{co}\{ z_1, z_2, \cdots, z_n \} \). If not \(\exists \gamma \in R^m, \| \gamma \| = 1 \) such that \((\gamma, w) \neq (\gamma, z_i) \) for \(1 \leq i \leq n \). Now \(w + \varepsilon\gamma \in K \). Thus \(\exists z \in E(K) \) so that

\[
(\gamma, z) \geq (\gamma, w + \varepsilon\gamma) = (\gamma, w) + \varepsilon > (\gamma, z_i) + \varepsilon, \quad 1 \leq i \leq n.
\]

It follows that \(\| z - z_i \| > \varepsilon \) if \(1 \leq i \leq n \). This contradicts the choice of \(n \).

So \(w \in \text{co}\{ z_1, z_2, \cdots, z_n \} \). This provides a measure \(\nu \in \mathcal{P}(K) \) such that \(\Phi(\nu) = w \) and \(\nu \leq 2^n \mu \). Clearly the probability measure \(\alpha \mu + (1 - \alpha)\nu \) represents \(y \). It is in \(\Pi \) since \(\alpha > 0 \) and \(\alpha \mu \leq \alpha \mu + (1 - \alpha)\nu \leq (\alpha + 2^n) \mu \).

Remarks. (1) I am grateful to H. S. Bear for his interest in this work. He pointed out to me that my original proof of Theorem 1 was valid only for metrizable \(K \), and supplied the simple geometric proof of Lemma 4. I am also grateful to the referee for indicating several places where a few more details would substantially improve the exposition.

(2) A stronger version of Lemma 1 follows immediately from Bauer’s open mapping theorem (to appear in Equationes Mathematicae, see [3, Theorems 5–13]).
(3) There remains the problem for general parts: Find a condition (geometric or topological) on a part Δ of K equivalent to (1).

REFERENCES

DEPARTMENT OF MATHEMATICS, QUEEN’S UNIVERSITY, KINGSTON, ONTARIO, CANADA