An internal characterization of the prime radical of a Jordan algebra
HTML articles powered by AMS MathViewer
- by Chester Tsai
- Proc. Amer. Math. Soc. 36 (1972), 361-364
- DOI: https://doi.org/10.1090/S0002-9939-1972-0313343-X
- PDF | Request permission
Abstract:
The prime radical of a Jordan algebra $\mathfrak {A}$ is the set of all very strongly nilpotent elements of $\mathfrak {A}$.References
- T. S. Erickson and S. Montgomery, The prime radical in special Jordan rings, Trans. Amer. Math. Soc. 156 (1971), 155–164. MR 274543, DOI 10.1090/S0002-9947-1971-0274543-4
- N. Jacobson, Lectures on quadratic Jordan algebras, Tata Institute of Fundamental Research Lectures on Mathematics, No. 45, Tata Institute of Fundamental Research, Bombay, 1969. MR 0325715
- Joachim Lambek, Lectures on rings and modules, Blaisdell Publishing Co. [Ginn and Co.], Waltham, Mass.-Toronto, Ont.-London, 1966. With an appendix by Ian G. Connell. MR 0206032
- Chester Tsai, The prime radical in a Jordan ring, Proc. Amer. Math. Soc. 19 (1968), 1171–1175. MR 230776, DOI 10.1090/S0002-9939-1968-0230776-X
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 36 (1972), 361-364
- MSC: Primary 17C10
- DOI: https://doi.org/10.1090/S0002-9939-1972-0313343-X
- MathSciNet review: 0313343