TRIANGULAR MATRIX ALGEBRAS
OVER HENSEL RINGS

JOSEPH A. WEHLEN

Abstract. Let (R, m) be a local Hensel ring and A an algebra over R which is finitely generated and projective as an R-module. If A contains a complete set of mutually orthogonal primitive idempotents e_1, \cdots, e_n indexed so that $e_i Ne_j = (0)$ whenever $i \geq j$, we show that A is isomorphic to a generalized triangular matrix algebra and that A is the epimorphic image of a finitely generated, projective R-algebra B of Hochschild dimension less than or equal to one.

Introduction. The class of residue algebras of semiprimary hereditary algebras has been thoroughly discussed in [5], [9], [2], [6] and [12]. They consist of those finitely generated algebras A over a field R which contain a complete set of mutually orthogonal primitive idempotents e_1, \cdots, e_n which can be indexed so that $e_i Ne_j = (0)$ whenever $i \geq j$, where N denotes the Jacobson radical of A, and A/N is R-separable. All such algebras are isomorphic to generalized triangular matrix algebras.

The purpose of this paper is to show that every finitely generated, projective algebra A over a local Hensel ring (R, m) satisfies the “triangular” idempotent condition $e_i Ne_j \subseteq mA$ whenever $i \geq j$ if and only if A is a residue algebra of a finitely generated, projective algebra B of Hochschild dimension less than or equal to one. We will call such algebras “almost one-dimensional.”

Such an algebra B, the maximal algebra for A, is usually neither semiprimary nor hereditary. In fact, if we assume that R is also noetherian, it has been shown in [11] that B is hereditary if and only if R is a field (R-dim $B \leq 1$) or a DVR (R-dim $B = 0$); B is semiprimary if and only if R has a nilpotent radical—in which case every finitely generated, projective algebra over R has infinite global dimension—or R is a field.

A generalization of a result of S. U. Chase [2] will provide a sort of converse to Theorem 2.7 of [10] in the case of a Hensel ring:
Theorem 0. Let A be a finitely generated, projective algebra over a commutative ring R. If R-dim $A = 1$, then, for every ideal I containing mA or some maximal ideal m of R, R-dim(A/I) is finite.

Conventions. Throughout this paper, all rings will have one and all ring homomorphisms will take the identity to the identity. All modules are unitary. By a local ring R, we mean only that R has a unique maximal ideal m. By a finitely generated R-algebra or a projective R-algebra, we shall mean that A is finitely generated or projective as a module over R. All homological dimensions will be taken as left modules and R-dim $A = \text{hd}_A(A)$ will denote the Hochschild (or cohomological) dimension of the algebra A, where $A^e = A \otimes_R A^o$. N will always denote the Jacobson radical of the algebra A.

1. Almost one-dimensional algebras. We shall say that a finitely generated, projective algebra A over a local Hensel ring (R, m) is almost one-dimensional if every complete set of mutually orthogonal primitive idempotents e_1, \cdots, e_n can be indexed so that $e_i N e_j \subseteq mA$ whenever $i \geq j$.

The definition is justified by the following results.

Theorem 1. Let A be a finitely generated, projective algebra over a local Hensel ring R. (a) If R-dim $A \leq 1$, then A is almost one-dimensional. (b) If A is almost one-dimensional, then A/mA is triangular in the sense of Chase; i.e., A/mA contains a complete set of mutually orthogonal primitive idempotents e_1, \cdots, e_n indexed so that $e_i(N/mA)e_j = (0)$ whenever $i \geq j$. (c) If A is almost one-dimensional, then R-dim A is finite.

(We note that the hypotheses that R is Hensel and A is R-projective are not necessary to prove (a) or (b).)

Proof. (a) is contained in Theorems 3.4 and 3.6 of [10]. (b) is obvious. For (c), an application of (b) and Theorem 4.1 of [2] shows that R/m-dim $A/mA = \text{gl dim} A/mA$ is finite. But then, by 2.1 of [10], R-dim $A = R/m$-dim A/mA is finite.

By means of part (b) of Theorem 1 and the idempotent lifting theorem of G. Azumaya [1, Theorem 24], it is easy to deduce the following equivalent conditions for an algebra to be almost one-dimensional from Theorem 4.1 of [2].

Theorem 2. If A is a finitely generated, projective algebra over a local Hensel ring R, the following conditions are equivalent:

(a) A is almost one-dimensional.

(b) There exists a complete set of mutually orthogonal primitive idempotents e_1, \cdots, e_n of A which can be indexed so that $e_i N e_j \subseteq mA$ whenever $i \geq j$.
(c) For every ideal I of A containing mA, A/I has finite Hochschild dimension.

d) A/(N^n + mA) has finite Hochschild dimension.

Results of [2], [5] and [9] on the nilpotence degree of the Jacobson radical are translatable in terms of the nilpotence degree of N modulo mA by use of the same techniques.

2. Construction of the maximal algebra. If A is almost one-dimensional, we shall call the one-dimensional algebra B which we are going to construct the "maximal algebra" for A.

Recall that a generalized triangular matrix algebra $T_n(A_1; M_{ij}/R)$ is the algebra defined in the following way: the A_i are algebras over R, the M_{ij} are left A_i- and right A_j-bimodules with $M_{ij} = 0$ for $i > j$ and $M_{ii} = A_i$; R commutes with the M_{ij}. Multiplication is defined via homomorphisms $\phi^i_{ij} : M_{ii} \otimes A_i \otimes M_{ij} \to M_{ij}$ with the ϕ^i_{ij} and the ϕ^j_{ij} isomorphisms; these mappings satisfy the "associative" law: $\phi^j_{ik}(id_{ij} \otimes \phi^i_{jk}) = \phi^i_{jk}(\phi^j_{ik} \otimes id_{ij})$. These functions induce a matrix multiplication on

$$T_n(A_1; M_{ij}/R) = \left\{ \begin{pmatrix} a_{11} & m_{12} & \cdots & m_{1n} \\
 a_{22} & \cdots & m_{2n} \\
 \vdots & \ddots & \ddots & \ddots \\
 0 & \cdots & a_{nn} \end{pmatrix} : a_{ii} \text{ in } A_i, m_{ij} \text{ in } M_{ij} \right\}$$

(cf. [10] or [6, p. 465]).

Theorem 3. Let A be a finitely generated, projective algebra over a local Hensel ring R. If A is almost one-dimensional, then A is isomorphic to a generalized triangular matrix algebra over R.

Proof. The proof is essentially contained in the case where A/N is isomorphic to a direct sum of division algebras over R. In this case, the e_i are all nonisomorphic. Now e_iAe_i is a separable, projective R-algebra. So $S = \sum_{i=1}^n e_iAe_i$ is the inertial subalgebra whose existence is guaranteed by [10, Proposition 2.5] and [1, Theorem 33], since $S/mS = A/N$.

Furthermore, if $j > k$, then

$$e_jAe_k = e_jSe_k + e_jNe_k \subseteq \mathfrak{m} \left(\bigoplus_{i \neq j} e_iAe_i \right),$$

where the first sum is not direct. Thus $e_jAe_k = \mathfrak{m}(e_jAe_k)$. Hence by Nakayama's lemma, $e_jAe_k = (0)$ for all $j > k$. Hence under the natural maps induced by the multiplication in A from e_iAe_i and e_iAe_j to e_iAe_j, we have that $A \cong T_n(e_iAe_i; e_iAe_j/R)$.

The general case follows by noting that if $e = \sum_{i=1}^n e_{ii}$, where i denotes the distinct isomorphism classes of primitive idempotents, then by
[6, Proposition 2]: R/m-dim $e(A/mA)e = gl$ dim $e(A/mA)e = gl$ dim $A/mA = R/m$-dim A/mA. Again, by Theorem 2.1 of [10], R-dim $A = R$-dim eAe. eAe is almost one-dimensional and $eAe/(eNe)$ is isomorphic to a direct sum of division algebras. Finally, following the techniques of [10] and [6], we have that if $eAe \cong T_n(e_iAe_{ij}; e_iAe_{ij}/R)$, then $A \cong T_n(A_i; M_{ij}/R)$ where $A_i = (e_iAe_{ii})_{s_i \times s_i}$ and $M_{ij} = (e_iAe_{ij})_{s_i \times s_j}$, the s_i by s_j matrices with entries from e_iAe_{ii}.

We are now in a position to construct the maximal algebra for A. Let $N^* = \sum_{i < k} M_{jk}, P = \sum_{i=1}^{n-1} M_{i, i+1}$, and $M = \sum_{i+1 < k} M_{ik}$. Clearly, $A = S \oplus N^* = S \oplus P \oplus M$ as S-S bimodules, where P, M, and N^* are finitely generated, projective R-modules. Set $P^{(k)}$ equal to the k-fold tensor product of P with itself over S. The middle-four-interchange gives that $(P \otimes S P) \otimes R/m \cong P/mP \otimes S/mS P/mP$. An easy induction then shows that $P^{(k)} \otimes P^{(k)} \cong (P/mP)^{(2k)}$.

Let $B = S \oplus P \oplus P^{(2)} \oplus P^{(3)} \oplus \cdots S \oplus P \oplus T$ be the algebra with multiplication defined as in a graded ring with $S = P^{(0)}$; i.e.,

$$(p_1 \otimes \cdots \otimes p_n) \cdot (p_1' \otimes \cdots \otimes p_n') = (p_1 \otimes \cdots \otimes p_n \otimes p_1' \otimes \cdots \otimes p_n')$$

(cf. [8, Definition 1.4]). To apply Theorem 2.1 of [10], we need to know that T is finitely generated and projective as an R-module. That T is R-projective follows by noting that P is R-projective and hence by [3, Proposition 2.3] S-projective; whence $P \otimes S P$ is S-projective and therefore R-projective. That T is finitely generated is shown by the following: Since P/mP is the S/mS-complement of $(N/mA)^2$ in (N/mA), by [9, p. 71], $(P/mP)^{(n)} = (0)$ for some n; so by Nakayama’s lemma, $(P/mP)^{(n)} = (0)$. Finite generation is now clear.

But B/mB is the maximal algebra over the triangular algebra A/mA. Hence, R-dim $B \leq 1$. Defining $f: B \rightarrow A$ by $f(s, p, p_1 \otimes p_2, \cdots) = s + p + p_1 p_2 + \cdots$, we obtain an algebra epimorphism of B onto A. It is clear that B/T is isomorphic to A/N^*. Thus we have just shown

Theorem 4. Let A be a finitely generated, projective algebra over a local Hensel ring R. The following are equivalent.

(a) A is almost one-dimensional.

(b) There is a finitely generated, projective algebra B over R such that R-dim $B \leq 1$, A is an epimorphic image of B with $B/T \cong A/N^*$, where N^* and T are the squares of the R-complements of the inertial subalgebras of A and B respectively.

Combining Theorems 2 and 4, one obtains the complete analogue of the results of [9], [2] and [6] for finitely generated triangular algebras over a field.
3. **Miscellaneous results and corollaries.** In [4, p. 311] S. Eilenberg gave necessary and sufficient conditions for a finitely generated algebra over a field to have a given Hochschild dimension. This characterization involved the Jacobson radical of the algebra. We note the following extension of that result: (Recall that an inertial subalgebra of an algebra A is a separable subalgebra S of A such that $A = S + N$, where the sum is not necessarily direct.)

Theorem 5. Let A be a finitely generated, projective algebra over a local ring R. Suppose that A has finite Hochschild dimension. Let S be an inertial subalgebra of A such that $A = S \oplus I$ as an R-direct sum for some ideal I of A. Then the following hold: (a) R-dim $A = \text{hd} A(S)$; and (b) R-dim $A = 1 + \text{hd} A(I)$.

Proof. Since A and S are R-projective, by the argument of Theorem 2.1 of [10], and by the corollary to Theorem 3 of [4], one sees that the following equalities hold:

\[
R\text{-dim } A = R/m\text{-dim } A/mA = \text{hd} A/mA(A/N) = \text{hd} A/mA(S/mS) = \text{hd} A(S).
\]

The second part follows directly from the first.

Corollary 5.1. Let the setting be as in the theorem. Then A is one-dimensional if and only if I is projective as an A-module; A is R-separable if and only if $I = (0)$.

In particular, the setting of Theorem 5 always holds true for the algebras considered in this paper. It gives us a particularly interesting characterization of which almost one-dimensional algebras are actually one-dimensional:

Corollary 5.2. Suppose A is a finitely generated, projective, almost one-dimensional algebra over a local Hensel ring R. Then, $A = S \oplus N^*$, where N^* is an ideal of A, and $\text{hd} A(S) = R$-dim A. Moreover, A has Hochschild dimension one if and only if N^* is projective as an A-module.

Finally, one can give the following characterization of almost one-dimensional algebras based upon the ideal N^* rather than the Jacobson radical, which allows one to restate Theorem 2 in terms of N^*.

Theorem 6. Let A be a finitely generated, projective algebra over a local Hensel ring R; let A have finite Hochschild dimension. A is almost one-dimensional if and only if there is an ideal N^* of A such that $A = S \oplus N^*$ (direct sum as R-modules), where S is the inertial subalgebra of A, and there exists a complete set of mutually orthogonal primitive idempotents e_1, \ldots, e_n such that $e_iN^*e_i = (0)$ for $i \geq j$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof. The "only if" part is a direct consequence of Theorem 3. Suppose that $A = S \oplus N^*$, and A contains the required set of idempotents. Then $e_i Ne_j = e_i(mS + N^*)e_j = e_i(mS)e_j \leq mA$ whenever $i \geq j$ and N denotes the Jacobson radical of A.

Concluding Remarks. The algebras of Hochschild dimension one over a local Hensel ring act as the semiprimary hereditary algebras over a field. In fact, an almost one-dimensional algebra A and its maximal algebra B can easily be seen to satisfy the definition of quasi-cyclic algebras and related algebras (with N^* and T replacing the Jacobson radicals) as given by Hochschild in [7, pp. 369 and 372].

It would be useful to know that the ideal N^* was a radical of the algebra A. In a future paper, we will show that if R is a noetherian domain which is a local Hensel ring, then N^* is the (Baer) lower radical of A. This is not true if R is a complete local ring with nilpotent radical, in which case the Jacobson and lower radicals are equal.

Bibliography

Department of Mathematics, Ohio University, Athens, Ohio 45701