The kernel of a block of a group algebra
HTML articles powered by AMS MathViewer
- by Gerhard O. Michler PDF
- Proc. Amer. Math. Soc. 37 (1973), 47-49 Request permission
Abstract:
Avoiding the theory of characters of finite groups and group algebras over fields of characteristic zero a ring theoretical proof is given for R. Brauerβs theorem which asserts that the (modular) kernel of a block of a group algebra FG of a finite group over a field F of characteristic $p > 0$ is a p-nilpotent normal subgroup of G.References
- Richard Brauer, Some applications of the theory of blocks of characters of finite groups. I, J. Algebra 1 (1964), 152β167. MR 168662, DOI 10.1016/0021-8693(64)90031-6
- Richard Brauer, Some applications of the theory of blocks of characters of finite groups. IV, J. Algebra 17 (1971), 489β521. MR 281806, DOI 10.1016/0021-8693(71)90006-8
- B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR 0224703 β, Modulare Darstellungstheorie endlicher Gruppen, Vorlesungsausarbeitung, Univ. Mainz, 1968.
- G. O. Michler, Blocks and centers of group algebras, Lectures on rings and modules (Tulane Univ. Ring and Operator Theory Year, 1970β1971, Vol. I), Lecture Notes in Math., Vol. 246, Springer, Berlin, 1972, pp.Β 429β563. MR 0332949
- Alex Rosenberg, Blocks and centres of group algebras, Math. Z. 76 (1961), 209β216. MR 130292, DOI 10.1007/BF01210971
- D. A. R. Wallace, Lower bounds for the radical of the group algebra of a finite $p$-soluble group, Proc. Edinburgh Math. Soc. (2) 16 (1968/69), 127β134. MR 245700, DOI 10.1017/S0013091500012505
Additional Information
- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 37 (1973), 47-49
- MSC: Primary 20C05
- DOI: https://doi.org/10.1090/S0002-9939-1973-0310048-7
- MathSciNet review: 0310048